Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury.
Exp Neurol
; 282: 86-98, 2016 08.
Article
en En
| MEDLINE
| ID: mdl-27191729
Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24h and 7days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Traumatismos de la Médula Espinal
/
Movimiento Celular
/
Células Mieloides
/
Locomoción
/
Región Lumbosacra
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Exp Neurol
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos