Your browser doesn't support javascript.
loading
Responder analysis without dichotomization.
Zhang, Zhiwei; Chu, Jianxiong; Rahardja, Dewi; Zhang, Hui; Tang, Li.
Afiliación
  • Zhang Z; a Department of Statistics , University of California , Riverside , California , USA.
  • Chu J; b Division of Biostatistics , Office of Surveillance and Biometrics, Center for Devices and Radiological Health, Food and Drug Administration , Silver Spring , Maryland , USA.
  • Rahardja D; c United States Department of Defense , Fort Meade , Maryland , USA.
  • Zhang H; d Department of Biostatistics , St. Jude Children's Research Hospital , Memphis , Tennessee , USA.
  • Tang L; d Department of Biostatistics , St. Jude Children's Research Hospital , Memphis , Tennessee , USA.
J Biopharm Stat ; 26(6): 1125-1135, 2016.
Article en En | MEDLINE | ID: mdl-27540771
In clinical trials, it is common practice to categorize subjects as responders and non-responders on the basis of one or more clinical measurements under pre-specified rules. Such a responder analysis is often criticized for the loss of information in dichotomizing one or more continuous or ordinal variables. It is worth noting that a responder analysis can be performed without dichotomization, because the proportion of responders for each treatment can be derived from a model for the original clinical variables (used to define a responder) and estimated by substituting maximum likelihood estimators of model parameters. This model-based approach can be considerably more efficient and more effective for dealing with missing data than the usual approach based on dichotomization. For parameter estimation, the model-based approach generally requires correct specification of the model for the original variables. However, under the sharp null hypothesis, the model-based approach remains unbiased for estimating the treatment difference even if the model is misspecified. We elaborate on these points and illustrate them with a series of simulation studies mimicking a study of Parkinson's disease, which involves longitudinal continuous data in the definition of a responder.
Asunto(s)
Palabras clave
Buscar en Google
Base de datos: MEDLINE Asunto principal: Ensayos Clínicos como Asunto / Modelos Estadísticos / Resultado del Tratamiento Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Biopharm Stat Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Base de datos: MEDLINE Asunto principal: Ensayos Clínicos como Asunto / Modelos Estadísticos / Resultado del Tratamiento Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Biopharm Stat Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos