Your browser doesn't support javascript.
loading
Automatic identification of coronary tree anatomy in coronary computed tomography angiography.
Cao, Qing; Broersen, Alexander; de Graaf, Michiel A; Kitslaar, Pieter H; Yang, Guanyu; Scholte, Arthur J; Lelieveldt, Boudewijn P F; Reiber, Johan H C; Dijkstra, Jouke.
Afiliación
  • Cao Q; Division of Image Processing, Department of Radiology, C2S, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Broersen A; Division of Image Processing, Department of Radiology, C2S, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • de Graaf MA; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
  • Kitslaar PH; Division of Image Processing, Department of Radiology, C2S, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Yang G; Medis Medical Imaging Systems BV, Leiden, The Netherlands.
  • Scholte AJ; Laboratory of Image Science and Technology, Southeast University, Nanjing, China.
  • Lelieveldt BPF; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
  • Reiber JHC; Division of Image Processing, Department of Radiology, C2S, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Dijkstra J; Division of Image Processing, Department of Radiology, C2S, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
Int J Cardiovasc Imaging ; 33(11): 1809-1819, 2017 Nov.
Article en En | MEDLINE | ID: mdl-28647774
An automatic coronary artery tree labeling algorithm is described to identify the anatomical segments of the extracted centerlines from coronary computed tomography angiography (CCTA) images. This method will facilitate the automatic lesion reporting and risk stratification of cardiovascular disease. Three-dimensional (3D) models for both right dominant (RD) and left dominant (LD) coronary circulations were built. All labels in the model were matched with their possible candidates in the extracted tree to find the optimal labeling result. In total, 83 CCTA datasets with 1149 segments were included in the testing of the algorithm. The results of the automatic labeling were compared with those by two experts. In all cases, the proximal parts of main branches including LM were labeled correctly. The automatic labeling algorithm was able to identify and assign labels to 89.2% RD and 83.6% LD coronary tree segments in comparison with the agreements of the two experts (97.6% RD, 87.6% LD). The average precision of start and end points of segments was 92.0% for RD and 90.7% for LD in comparison with the manual identification by two experts while average differences in experts is 1.0% in RD and 2.2% in LD cases. All cases got similar clinical risk scores as the two experts. The presented fully automatic labeling algorithm can identify and assign labels to the extracted coronary centerlines for both RD and LD circulations.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Interpretación de Imagen Radiográfica Asistida por Computador / Angiografía Coronaria / Vasos Coronarios / Angiografía por Tomografía Computarizada / Modelos Anatómicos / Modelos Cardiovasculares Tipo de estudio: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Int J Cardiovasc Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Interpretación de Imagen Radiográfica Asistida por Computador / Angiografía Coronaria / Vasos Coronarios / Angiografía por Tomografía Computarizada / Modelos Anatómicos / Modelos Cardiovasculares Tipo de estudio: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Int J Cardiovasc Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos