Your browser doesn't support javascript.
loading
Tuning bacterial hydrodynamics with magnetic fields.
Pierce, C J; Mumper, E; Brown, E E; Brangham, J T; Lower, B H; Lower, S K; Yang, F Y; Sooryakumar, R.
Afiliación
  • Pierce CJ; Department of Physics, The Ohio State University, 191 W Woodruff Ave., Columbus, Ohio 43210, USA.
  • Mumper E; School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, Ohio 43210, USA.
  • Brown EE; School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, Ohio 43210, USA.
  • Brangham JT; Department of Physics, The Ohio State University, 191 W Woodruff Ave., Columbus, Ohio 43210, USA.
  • Lower BH; School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, Ohio 43210, USA.
  • Lower SK; School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, Ohio 43210, USA.
  • Yang FY; School of Earth Sciences, The Ohio State University, 125 Oval Dr. S, Columbus, Ohio 43210, USA.
  • Sooryakumar R; Department of Microbial Infection and Immunity, The Ohio State University, 460 West 12th Ave., Columbus, Ohio 43210, USA.
Phys Rev E ; 95(6-1): 062612, 2017 Jun.
Article en En | MEDLINE | ID: mdl-28709362
ABSTRACT
Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Magnetospirillum / Hidrodinámica / Campos Magnéticos Idioma: En Revista: Phys Rev E Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Magnetospirillum / Hidrodinámica / Campos Magnéticos Idioma: En Revista: Phys Rev E Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos