Your browser doesn't support javascript.
loading
An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis.
Shahsavani, M; Pronk, R J; Falk, R; Lam, M; Moslem, M; Linker, S B; Salma, J; Day, K; Schuster, J; Anderlid, B-M; Dahl, N; Gage, F H; Falk, A.
Afiliación
  • Shahsavani M; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Pronk RJ; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Falk R; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Lam M; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Moslem M; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Linker SB; Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Salma J; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Day K; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
  • Schuster J; Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
  • Anderlid BM; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
  • Dahl N; Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
  • Gage FH; Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Falk A; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. Anna.falk@ki.se.
Mol Psychiatry ; 23(7): 1674-1684, 2018 07.
Article en En | MEDLINE | ID: mdl-28924182
ABSTRACT
Lissencephaly comprises a spectrum of brain malformations due to impaired neuronal migration in the developing cerebral cortex. Classical lissencephaly is characterized by smooth cerebral surface and cortical thickening that result in seizures, severe neurological impairment and developmental delay. Mutations in the X-chromosomal gene DCX, encoding doublecortin, is the main cause of classical lissencephaly. Much of our knowledge about DCX-associated lissencephaly comes from post-mortem analyses of patient's brains, mainly since animal models with DCX mutations do not mimic the disease. In the absence of relevant animal models and patient brain specimens, we took advantage of induced pluripotent stem cell (iPSC) technology to model the disease. We established human iPSCs from two males with mutated DCX and classical lissencephaly including smooth brain and abnormal cortical morphology. The disease was recapitulated by differentiation of iPSC into neural cells followed by expression profiling and dissection of DCX-associated functions. Here we show that neural stem cells, with absent or reduced DCX protein expression, exhibit impaired migration, delayed differentiation and deficient neurite formation. Hence, the patient-derived iPSCs and neural stem cells provide a system to further unravel the functions of DCX in normal development and disease.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Neuropéptidos / Lisencefalia / Proteínas Asociadas a Microtúbulos Límite: Humans / Infant / Male / Newborn Idioma: En Revista: Mol Psychiatry Asunto de la revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Año: 2018 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Neuropéptidos / Lisencefalia / Proteínas Asociadas a Microtúbulos Límite: Humans / Infant / Male / Newborn Idioma: En Revista: Mol Psychiatry Asunto de la revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Año: 2018 Tipo del documento: Article País de afiliación: Suecia