Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser scanning microscopy.
J Microsc
; 2018 Apr 20.
Article
en En
| MEDLINE
| ID: mdl-29676793
We implement a massively parallel population Monte Carlo approximate Bayesian computation (PMC-ABC) method for estimating diffusion coefficients, sizes and concentrations of diffusing nanoparticles in liquid suspension using confocal laser scanning microscopy and particle tracking. The method is based on the joint probability distribution of diffusion coefficients and the time spent by a particle inside a detection region where particles are tracked. We present freely available central processing unit (CPU) and graphics processing unit (GPU) versions of the analysis software, and we apply the method to characterize mono- and bidisperse samples of fluorescent polystyrene beads.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Microsc
Año:
2018
Tipo del documento:
Article
País de afiliación:
Suecia