Your browser doesn't support javascript.
loading
Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser scanning microscopy.
Röding, M; Billeter, M.
Afiliación
  • Röding M; RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden.
  • Billeter M; Department of Space, Earth and Environment, Chalmers University of Technology, Göteborg, Sweden.
J Microsc ; 2018 Apr 20.
Article en En | MEDLINE | ID: mdl-29676793
We implement a massively parallel population Monte Carlo approximate Bayesian computation (PMC-ABC) method for estimating diffusion coefficients, sizes and concentrations of diffusing nanoparticles in liquid suspension using confocal laser scanning microscopy and particle tracking. The method is based on the joint probability distribution of diffusion coefficients and the time spent by a particle inside a detection region where particles are tracked. We present freely available central processing unit (CPU) and graphics processing unit (GPU) versions of the analysis software, and we apply the method to characterize mono- and bidisperse samples of fluorescent polystyrene beads.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Microsc Año: 2018 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Microsc Año: 2018 Tipo del documento: Article País de afiliación: Suecia