Transcriptome and Co-Expression Network Analyses Identify Key Genes Regulating Nitrogen Use Efficiency in Brassica juncea L.
Sci Rep
; 8(1): 7451, 2018 05 10.
Article
en En
| MEDLINE
| ID: mdl-29748645
Nitrate is the main source of inorganic nitrogen for plants, which also act as signaling molecule. Present study was aimed to understand nitrate regulatory mechanism in Brassica juncea cultivars, with contrasting nitrogen-use-efficiency (NUE) viz. Pusa Bold (PB, high-NUE) and Pusa Jai Kisan (PJK, low-NUE), employing RNA-seq approach. A total of 4031, 3874 and 3667 genes in PB and 2982, 2481 and 2843 genes in PJK were differentially expressed in response to early, low (0.25 mM KNO3), medium (2 mM KNO3) and high (4 mM KNO3) nitrate treatments, respectively, as compared to control (0 mM KNO3). Genes of N-uptake (NRT1.1, NRT1.8, and NRT2.1), assimilation (NR1, NR2, NiR, GS1.3, and Fd-GOGAT) and remobilization (GDH2, ASN2-3 and ALaT) were highly-upregulated in PB than in PJK in response to early nitrate treatments. We have also identified transcription factors and protein kinases that were rapidly induced in response to nitrate, suggesting their involvement in nitrate-mediated signaling. Co-expression network analysis revealed four nitrate specific modules in PB, enriched with GO terms like, "Phenylpropanoid pathway", "Nitrogen compound metabolic process" and "Carbohydrate metabolism". The network analysis also identified HUB transcription factors like mTERF, FHA, Orphan, bZip and FAR1, which may be the key regulators of nitrate-mediated response in B. juncea.
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Proteínas de Plantas
/
Regulación de la Expresión Génica de las Plantas
/
Redes Reguladoras de Genes
/
Transcriptoma
/
Planta de la Mostaza
/
Nitratos
/
Nitrógeno
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Sci Rep
Año:
2018
Tipo del documento:
Article
País de afiliación:
India