Your browser doesn't support javascript.
loading
Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting.
Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong.
Afiliación
  • Chen QQ; Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. chenyong@mail.ipc.ac.cn.
Chem Commun (Camb) ; 54(49): 6400-6403, 2018 Jun 14.
Article en En | MEDLINE | ID: mdl-29872782
NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Chem Commun (Camb) Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Chem Commun (Camb) Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article