Your browser doesn't support javascript.
loading
Effective pragmatic approach of diagnosis of multidrug-resistant tuberculosis by high-resolution melt curve assay.
Negi, Sanjay Singh; Singh, Priyanka; Bhargava, Anudita; Chandrakar, Sachin; Gaikwad, Ujjwala; Das, Padma; Behra, Ajoy.
Afiliación
  • Negi SS; Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
  • Singh P; Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
  • Bhargava A; Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
  • Chandrakar S; Department of Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
  • Gaikwad U; Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
  • Das P; Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
  • Behra A; Department of Pulmonary Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
Int J Mycobacteriol ; 7(3): 228-235, 2018.
Article en En | MEDLINE | ID: mdl-30198501
ABSTRACT

Background:

Effective management of multidrug-resistant tuberculosis (MDR-TB) requires cost-effective and rapid screening of rifampicin (RIF) and isoniazid (INH) resistance. Accordingly, a highly promising high-resolution melting (HRM) analysis was evaluated in the detection of mutation in rpoB, katG gene and inhA promoter region in Mycobacterium tuberculosis isolates.

Methods:

A total of 143 M. tuberculosis isolates comprising phenotypically confirmed 94 MDR and 49 sensitive isolates were analyzed by HRM following real-time-polymerase chain reaction in comparison to gold standard of targeted DNA sequencing of rpoB, katG gene and inhA promoter region.

Results:

HRM correctly identified MDR-TB by rapid and accurate detection of predominantly and infrequently occurring specific single nucleotide polymorphism in rpoB, katG gene and inhA promoter region. rpoB HRM showed sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 98% each respectively. Predominantly, S531 L/W (TCG → TTG/TGG) mutation accounted for 68.47% of RIF resistance followed by H526Y/R (13.04%, CAC → TAC/CGC), D516Y/V/G (10.86%, GAC → TAC/GTC/GGC), Q513P (4.34%, CAA → CCA), and one rare mutation at codon position L533A (CTG → CGG). Combined KatG and inhA HRM sensitivity, specificity, PPV, and NPV were 90%, 100%, 100%, and 84.48% respectively and detected frequent mutation at codon position S315T/I/N (70%, AGC → ACC, AGC → ACT, AGC → AAC) and rare mutation at codon position T314P (3.3%, ACC → CCC) and 329 (2.2%, GAC → GCC) of katG gene. In inhA, mutations were recorded at mostly promoter position - 15 (10%, C → T) and infrequently at - 8 (3.3%, T → G, T → C). HRM assay limitation noticed in recognizing silent mutation in rpoB as a mutant, nondetection of infrequent mutation S310A in katG, and the inability of detecting mutation outside the targeted region of investigated genes.

Conclusion:

HRM may prove to be a vital molecular assay in rapid screening of TB cases for early detection of MDR TB, leading to early evidenced-based initiation of antitubercular treatment that will significantly reduce MDR transmission.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Tuberculosis Resistente a Múltiples Medicamentos / Farmacorresistencia Bacteriana Múltiple / Reacción en Cadena en Tiempo Real de la Polimerasa / Mycobacterium tuberculosis Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Int J Mycobacteriol Año: 2018 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Tuberculosis Resistente a Múltiples Medicamentos / Farmacorresistencia Bacteriana Múltiple / Reacción en Cadena en Tiempo Real de la Polimerasa / Mycobacterium tuberculosis Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Int J Mycobacteriol Año: 2018 Tipo del documento: Article País de afiliación: India