Your browser doesn't support javascript.
loading
Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches.
Bastos, Ana; Friedlingstein, Pierre; Sitch, Stephen; Chen, Chi; Mialon, Arnaud; Wigneron, Jean-Pierre; Arora, Vivek K; Briggs, Peter R; Canadell, Josep G; Ciais, Philippe; Chevallier, Frédéric; Cheng, Lei; Delire, Christine; Haverd, Vanessa; Jain, Atul K; Joos, Fortunat; Kato, Etsushi; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R; Myneni, Ranga; Nabel, Julia E M S; Pongratz, Julia; Poulter, Benjamin; Rödenbeck, Christian; Séférian, Roland; Tian, Hanqin; van Eck, Christel; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P; Wiltshire, Andy; Yang, Jia; Zaehle, Sönke; Zeng, Ning; Zhu, Dan.
Afiliación
  • Bastos A; Department of Geography, Ludwig Maximilians University Munich, Luisenstr. 37, Munich D-80333, Germany ana.bastos@lmu.de.
  • Friedlingstein P; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette 91191, France.
  • Sitch S; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
  • Chen C; College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK.
  • Mialon A; Department of Earth and Environment, Boston University, Boston, MA 02215, USA.
  • Wigneron JP; CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, 31400 Toulouse, France.
  • Arora VK; UMR 1391 ISPA, INRA, Centre Bordeaux Aquitaine, Villenave d'Ornon 33883, France.
  • Briggs PR; Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, British Columbia, Canada V8W2Y2.
  • Canadell JG; CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia.
  • Ciais P; Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia.
  • Chevallier F; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette 91191, France.
  • Cheng L; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette 91191, France.
  • Delire C; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, People's Republic of China.
  • Haverd V; Centre National de Recherches Météorologiques, CNRM, Unité 3589 CNRS/Meteo-France/Université Fédérale de Toulouse, Av G Coriolis, Toulouse 31057, France.
  • Jain AK; CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia.
  • Joos F; Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA.
  • Kato E; Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern CH-3012, Switzerland.
  • Lienert S; Institute of Applied Energy (IAE), Minato, Tokyo 105-0003, Japan.
  • Lombardozzi D; Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern CH-3012, Switzerland.
  • Melton JR; Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80302, USA.
  • Myneni R; Climate Processes Section, Environment and Climate Change Canada, Downsview, Ontario, Canada V8W2Y2.
  • Nabel JEMS; Department of Earth and Environment, Boston University, Boston, MA 02215, USA.
  • Pongratz J; Max Planck Institute for Meteorology, Hamburg 20146, Germany.
  • Poulter B; Department of Geography, Ludwig Maximilians University Munich, Luisenstr. 37, Munich D-80333, Germany.
  • Rödenbeck C; Max Planck Institute for Meteorology, Hamburg 20146, Germany.
  • Séférian R; NASA Goddard Space Flight Center, Biospheric Sciences Lab, Greenbelt, MD 20816, USA.
  • Tian H; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.
  • van Eck C; Centre National de Recherches Météorologiques, CNRM, Unité 3589 CNRS/Meteo-France/Université Fédérale de Toulouse, Av G Coriolis, Toulouse 31057, France.
  • Viovy N; International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA.
  • Vuichard N; Department of Geoscience, Environment and Society, CP 160/02, Université Libre de Bruxelles, Brussels 1050, Belgium.
  • Walker AP; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette 91191, France.
  • Wiltshire A; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette 91191, France.
  • Yang J; Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
  • Zaehle S; Met Office Hadley Centre, Exeter EX1 3PB, UK.
  • Zeng N; International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA.
  • Zhu D; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.
Article en En | MEDLINE | ID: mdl-30297465
ABSTRACT
Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the future over many continents, and particularly in the tropics. Here we present an in-depth analysis of the response of the terrestrial carbon cycle to the 2015/2016 El Niño that imposed extreme warming and dry conditions in the tropics and other sensitive regions. First, we provide a synthesis of the spatio-temporal evolution of anomalies in net land-atmosphere CO2 fluxes estimated by two in situ measurements based on atmospheric inversions and 16 land-surface models (LSMs) from TRENDYv6. Simulated changes in ecosystem productivity, decomposition rates and fire emissions are also investigated. Inversions and LSMs generally agree on the decrease and subsequent recovery of the land sink in response to the onset, peak and demise of El Niño conditions and point to the decreased strength of the land carbon sink by 0.4-0.7 PgC yr-1 (inversions) and by 1.0 PgC yr-1 (LSMs) during 2015/2016. LSM simulations indicate that a decrease in productivity, rather than increase in respiration, dominated the net biome productivity anomalies in response to ENSO throughout the tropics, mainly associated with prolonged drought conditions.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle patterns, mechanisms and implications'.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Atmósfera / Ecosistema / Ciclo del Carbono / El Niño Oscilación del Sur Tipo de estudio: Qualitative_research Idioma: En Revista: Philos Trans R Soc Lond B Biol Sci Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Atmósfera / Ecosistema / Ciclo del Carbono / El Niño Oscilación del Sur Tipo de estudio: Qualitative_research Idioma: En Revista: Philos Trans R Soc Lond B Biol Sci Año: 2018 Tipo del documento: Article País de afiliación: Alemania