Your browser doesn't support javascript.
loading
New insights into the origin and evolution of α-amylase genes in green plants.
Ju, Liangliang; Pan, Zhifen; Zhang, Haili; Li, Qiao; Liang, Junjun; Deng, Guangbing; Yu, Maoqun; Long, Hai.
Afiliación
  • Ju L; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Pan Z; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang H; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Li Q; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Liang J; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Deng G; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Yu M; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
  • Long H; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
Sci Rep ; 9(1): 4929, 2019 03 20.
Article en En | MEDLINE | ID: mdl-30894656
ABSTRACT
Gene duplication is a source of genetic materials and evolutionary changes, and has been associated with gene family expansion. Functional divergence of duplicated genes is strongly directed by natural selections such as organism diversification and novel feature acquisition. We show that, plant α-amylase gene family (AMY) is comprised of six subfamilies (AMY1-AMY6) that fell into two ancient phylogenetic lineages (AMY3 and AMY4). Both AMY1 and AMY2 are grass-specific and share a single-copy ancestor, which is derived from grass AMY3 genes that have undergone massive tandem and whole-genome duplications during evolution. Ancestral features of AMY4 and AMY5/AMY6 genes have been retained among four green algal sequences (Chrein_08.g362450, Vocart_0021s0194, Dusali_0430s00012 and Monegl_16464), suggesting a gene duplication event following Chlorophyceae diversification. The observed horizontal gene transfers between plant and bacterial AMYs, and chromosomal locations of AMY3 and AMY4 genes in the most ancestral green body (C. reinhardtii), provide evidences for the monophyletic origin of plant AMYs. Despite subfamily-specific sequence divergence driven by natural selections, the active site and SBS1 are well-conserved across different AMY isoforms. The differentiated electrostatic potentials and hydrogen bands-forming residue polymorphisms, further imply variable digestive abilities for a broad substrates in particular tissues or subcellular localizations.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Filogenia / Proteínas de Plantas / Evolución Molecular / Alfa-Amilasas / Viridiplantae Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Filogenia / Proteínas de Plantas / Evolución Molecular / Alfa-Amilasas / Viridiplantae Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: China