Your browser doesn't support javascript.
loading
Novel Yersinia enterocolitica Prophages and a Comparative Analysis of Genomic Diversity.
Liang, Junrong; Kou, Zengqiang; Qin, Shuai; Chen, Yuhuang; Li, Zhenpeng; Li, Chuchu; Duan, Ran; Hao, Huijing; Zha, Tao; Gu, Wenpeng; Huang, Yuanming; Xiao, Meng; Jing, Huaiqi; Wang, Xin.
Afiliación
  • Liang J; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Kou Z; Shandong Provincial Centre for Disease Control and Prevention, Jinan, China.
  • Qin S; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Chen Y; Shenzhen Nanshan Maternity and Child Heath Care Hospital, Shenzhen, China.
  • Li Z; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Li C; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Duan R; Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China.
  • Hao H; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Zha T; Chang Ping Women and Children Health Care Hospital, Beijing, China.
  • Gu W; Wuhu Municipal Centre for Disease Control and Prevention, Wuhu, China.
  • Huang Y; Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China.
  • Xiao M; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Jing H; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
  • Wang X; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
Front Microbiol ; 10: 1184, 2019.
Article en En | MEDLINE | ID: mdl-31191498
Yersinia enterocolitica is a major agent of foodborne diseases worldwide. Prophage plays an important role in the genetic evolution of the bacterial genome. Little is known about the genetic information about prophages in the genome of Y. enterocolitica, and no pathogenic Y. enterocolitica prophages have been described. In this study, we induced and described the genomes of six prophages from pathogenic Y. enterocolitica for the first time. Phylogenetic analysis based on whole genome sequencing revealed that these novel Yersinia phages are genetically distinct from the previously reported phages, showing considerable genetic diversity. Interestingly, the prophages induced from O:3 and O:9 Y. enterocolitica showed different genomic sequences and morphology but highly conserved among the same serotype strains, which classified into two diverse clusters. The three long-tailed Myoviridae prophages induced from serotype O:3 Y. enterocolitica were highly conserved, shared ≥99.99% identity and forming genotypic cluster A; the three Podoviridae prophages induced from the serotype O:9 strains formed cluster B, also shared more than 99.90% identity with one another. Cluster A was most closely related to O:5 non-pathogenic Y. enterocolitica prophage PY54 (61.72% identity). The genetic polymorphism of these two kinds of prophages and highly conserved among the same serotype strains, suggested a possible shared evolutionary past for these phages: originated from distinct ancestors, and entered pathogenic Y. enterocolitica as extrachromosomal genetic components during evolution when facing selective pressure. These results are critically important for further understanding of phage roles in host physiology and the pathology of disease.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2019 Tipo del documento: Article País de afiliación: China