Your browser doesn't support javascript.
loading
Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning-Based Radiomics.
Gu, Jiabing; Zhu, Jian; Qiu, Qingtao; Wang, Yungang; Bai, Tong; Yin, Yong.
Afiliación
  • Gu J; School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, Shandong, China.
  • Zhu J; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
  • Qiu Q; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
  • Wang Y; Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
  • Bai T; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
  • Yin Y; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
AJR Am J Roentgenol ; 213(6): 1348-1357, 2019 12.
Article en En | MEDLINE | ID: mdl-31461321
OBJECTIVE. The purpose of this study was to develop and validate a radiomics model for evaluating immunohistochemical characteristics in patients with suspected thyroid nodules. MATERIALS AND METHODS. A total of 103 patients (training cohort-to-validation cohort ratio, ≈ 3:1) with suspected thyroid nodules who had undergone thyroidectomy and immunohistochemical analysis were enrolled. The immunohistochemical markers were cytokeratin 19, galectin 3, thyroperoxidase, and high-molecular-weight cytokeratin. All patients underwent CT before surgery, and a 3D slicer was used to analyze images of the surgical specimen. Test-retest and Spearman correlation coefficient (ρ) were used to select reproducible and nonredundant features. The Kruskal-Wallis test (p < 0.05) was used for feature selection, and a feature-based model was built by support vector machine methods. The performance of the radiomic models was assessed with respect to accuracy, sensitivity, specificity, corresponding AUC, and independent validation. RESULTS. Eighty-six reproducible and nonredundant features selected from the 828 features were used to build the model. The best performance of the cytokeratin 19 model yielded accuracy of 84.4% in the training cohort and 80.0% in the validation cohort. The thyroperoxidase and galectin 3 predictive models yielded accuracies of 81.4% and 82.5% in the training cohort and 84.2% and 85.0% in the validation cohort. The performance of the high-molecular-weight cytokeratin predictive model was not good (accuracy, 65.7%) and could not be validated. CONCLUSION. A radiomics model with excellent performance was developed for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3, and thyroperoxidase based on CT images. This model may be used to identify benign and malignant thyroid nodules.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Inmunohistoquímica / Tomografía Computarizada por Rayos X / Nódulo Tiroideo / Aprendizaje Automático Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: AJR Am J Roentgenol Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Inmunohistoquímica / Tomografía Computarizada por Rayos X / Nódulo Tiroideo / Aprendizaje Automático Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: AJR Am J Roentgenol Año: 2019 Tipo del documento: Article País de afiliación: China