Your browser doesn't support javascript.
loading
Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si3N4 Quantum Photonic Circuits.
Schnauber, Peter; Singh, Anshuman; Schall, Johannes; Park, Suk In; Song, Jin Dong; Rodt, Sven; Srinivasan, Kartik; Reitzenstein, Stephan; Davanco, Marcelo.
Afiliación
  • Schnauber P; Institute of Solid State Physics , Technische Universität Berlin , Berlin 10623 , Germany.
  • Singh A; National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.
  • Schall J; Maryland NanoCenter , University of Maryland , College Park , Maryland 20899 , United States.
  • Park SI; Institute of Solid State Physics , Technische Universität Berlin , Berlin 10623 , Germany.
  • Song JD; Center for Optoelectronic Convergence Systems , Korea Institute of Science and Technology , Seoul 02792 South Korea.
  • Rodt S; Center for Optoelectronic Convergence Systems , Korea Institute of Science and Technology , Seoul 02792 South Korea.
  • Srinivasan K; Institute of Solid State Physics , Technische Universität Berlin , Berlin 10623 , Germany.
  • Reitzenstein S; National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.
  • Davanco M; Joint Quantum Institute , NIST/University of Maryland , College Park , Maryland 20899 , United States.
Nano Lett ; 19(10): 7164-7172, 2019 10 09.
Article en En | MEDLINE | ID: mdl-31470692
ABSTRACT
Silicon photonics enables scaling of quantum photonic systems by allowing the creation of extensive, low-loss, reconfigurable networks linking various functional on-chip elements. Inclusion of single quantum emitters onto photonic circuits, acting as on-demand sources of indistinguishable photons or single-photon nonlinearities, may enable large-scale chip-based quantum photonic circuits and networks. Toward this, we use low-temperature in situ electron-beam lithography to deterministically produce hybrid GaAs/Si3N4 photonic devices containing single InAs quantum dots precisely located inside nanophotonic structures, which act as efficient, Si3N4 waveguide-coupled on-chip, on-demand single-photon sources. The precise positioning afforded by our scalable fabrication method furthermore allows observation of postselected indistinguishable photons. This indicates a promising path toward significant scaling of chip-based quantum photonics, enabled by large fluxes of indistinguishable single-photons produced on-demand, directly on-chip.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania