Your browser doesn't support javascript.
loading
Molecular characterization of insulin-like peptides in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).
Xue, W-H; Liu, Y-L; Jiang, Y-Q; He, S-F; Wang, Q-Q; Yang, Z-N; Xu, H-J.
Afiliación
  • Xue WH; State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
  • Liu YL; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
  • Jiang YQ; Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
  • He SF; State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
  • Wang QQ; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
  • Yang ZN; Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
  • Xu HJ; State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
Insect Mol Biol ; 29(3): 309-319, 2020 06.
Article en En | MEDLINE | ID: mdl-31967370
Insulin-like peptides (ILPs) including insulin, insulin-like growth factor (IGF) and relaxin are evolutionarily conserved hormones in metazoans, and they are involved in diverse physiological processes. The migratory brown planthopper (BPH), Nilaparvata lugens, encodes four ILP genes (Nlilp1, Nlilp2, Nlilp3 and Nlilp4) but their physiological roles are largely unknown. Sequence analysis showed that NlILP1 contained a relaxin-specific G protein-coupled receptor-binding motif and a variant motif of cysteine residues, and NlILP2 and NlILP4 resembled vertebrate IGFs. RNA interference (RNAi)-mediated gene silencing showed that depletion of each of Nlilp1, 2 and 3 significantly delayed the developmental duration of nymphs, and this effect could be exacerbated by double or triple gene depletion. Depletion of Nlilp1, Nlilp2 or Nlilp3 induces the accumulation of glucose, trehalose and glycogen, which is contradictory to depletion of the insulin receptor (NlInR1) in the BPH. Depletion of Nlilp1 significantly enhanced starvation resistance in both females and males although its extent was smaller than NlInR1 depletion. A parental RNAi assay showed that depletion of each of Nlilp1-4 dramatically impaired female fecundity. These findings indicate that NlILP1-4 have redundant and distinct roles in physiological processes in the BPH, thereby enhancing our understanding of the contribution of each NlILP to the ecological success of this species in natural habitats.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas de Insectos / Hemípteros Límite: Animals Idioma: En Revista: Insect Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas de Insectos / Hemípteros Límite: Animals Idioma: En Revista: Insect Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2020 Tipo del documento: Article País de afiliación: China