Your browser doesn't support javascript.
loading
A High Cell-Bearing Capacity Multibore Hollow Fiber Device for Macroencapsulation of Islets of Langerhans.
Skrzypek, Katarzyna; Groot Nibbelink, Milou; Liefers-Visser, Jolanda; Smink, Alexandra M; Stoimenou, Eleftheria; Engelse, Marten A; de Koning, Eelco J P; Karperien, Marcel; de Vos, Paul; van Apeldoorn, Aart; Stamatialis, Dimitrios.
Afiliación
  • Skrzypek K; Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands.
  • Groot Nibbelink M; Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands.
  • Liefers-Visser J; Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
  • Smink AM; Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
  • Stoimenou E; Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
  • Engelse MA; Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands.
  • de Koning EJP; Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands.
  • Karperien M; Hubrecht Institute, Utrecht, 3584CT, The Netherlands.
  • de Vos P; Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands.
  • van Apeldoorn A; Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
  • Stamatialis D; Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands.
Macromol Biosci ; 20(8): e2000021, 2020 08.
Article en En | MEDLINE | ID: mdl-32567161
ABSTRACT
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin-producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface-to-volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Islotes Pancreáticos / Ingeniería de Tejidos Límite: Humans Idioma: En Revista: Macromol Biosci Asunto de la revista: BIOQUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Islotes Pancreáticos / Ingeniería de Tejidos Límite: Humans Idioma: En Revista: Macromol Biosci Asunto de la revista: BIOQUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos