Your browser doesn't support javascript.
loading
MR Image-Based Attenuation Correction of Brain PET Imaging: Review of Literature on Machine Learning Approaches for Segmentation.
Mecheter, Imene; Alic, Lejla; Abbod, Maysam; Amira, Abbes; Ji, Jim.
Afiliación
  • Mecheter I; Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UK. imene.mecheter@brunel.ac.uk.
  • Alic L; Department of Electrical and Computer Engineering, Texas A & M University at Qatar, Doha, Qatar. imene.mecheter@brunel.ac.uk.
  • Abbod M; Magnetic Detection and Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, Netherlands.
  • Amira A; Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UK.
  • Ji J; Institute of Artificial Intelligence, De Montfort University, Leicester, UK.
J Digit Imaging ; 33(5): 1224-1241, 2020 10.
Article en En | MEDLINE | ID: mdl-32607906
Recent emerging hybrid technology of positron emission tomography/magnetic resonance (PET/MR) imaging has generated a great need for an accurate MR image-based PET attenuation correction. MR image segmentation, as a robust and simple method for PET attenuation correction, has been clinically adopted in commercial PET/MR scanners. The general approach in this method is to segment the MR image into different tissue types, each assigned an attenuation constant as in an X-ray CT image. Machine learning techniques such as clustering, classification and deep networks are extensively used for brain MR image segmentation. However, only limited work has been reported on using deep learning in brain PET attenuation correction. In addition, there is a lack of clinical evaluation of machine learning methods in this application. The aim of this review is to study the use of machine learning methods for MR image segmentation and its application in attenuation correction for PET brain imaging. Furthermore, challenges and future opportunities in MR image-based PET attenuation correction are discussed.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2020 Tipo del documento: Article