Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice.
Phys Rev Lett
; 124(25): 253201, 2020 Jun 26.
Article
en En
| MEDLINE
| ID: mdl-32639753
We study an array of ultracold atoms in an optical lattice (Mott insulator) excited with a coherent ultrashort laser pulse to a state where single-electron wave functions spatially overlap. Beyond a threshold principal quantum number where Rydberg orbitals of neighboring lattice sites overlap with each other, the atoms efficiently undergo spontaneous Penning ionization resulting in a drastic change of ion-counting statistics, sharp increase of avalanche ionization, and the formation of an ultracold plasma. These observations signal the actual creation of electronic states with overlapping wave functions, which is further confirmed by a significant difference in ionization dynamics between a Bose-Einstein condensate and a Mott insulator. This system is a promising platform for simulating electronic many-body phenomena dominated by Coulomb interactions in the condensed phase.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2020
Tipo del documento:
Article
País de afiliación:
Japón