Your browser doesn't support javascript.
loading
Morphological autoencoders for apnea detection in respiratory gating radiotherapy.
Abreu, Mariana; Fred, Ana; Valente, João; Wang, Chen; Plácido da Silva, Hugo.
Afiliación
  • Abreu M; Instituto Superior Técnico, 1049-001, Lisboa, Portugal; Instituto de Telecomunicações, Lisboa, 1049-001, Portugal. Electronic address: mariana.abreu@tecnico.ulisboa.pt.
  • Fred A; Instituto Superior Técnico, 1049-001, Lisboa, Portugal; Instituto de Telecomunicações, Lisboa, 1049-001, Portugal. Electronic address: afred@lx.it.pt.
  • Valente J; Instituto Politécnico de Castelo Branco, Castelo Branco, 6000-084, Portugal. Electronic address: valente@ipcb.pt.
  • Wang C; Xinhua Net, Beijing, 100031, China. Electronic address: wangchen@news.cn.
  • Plácido da Silva H; Instituto Superior Técnico, 1049-001, Lisboa, Portugal; Instituto de Telecomunicações, Lisboa, 1049-001, Portugal. Electronic address: hsilva@lx.it.pt.
Comput Methods Programs Biomed ; 195: 105675, 2020 Oct.
Article en En | MEDLINE | ID: mdl-32750630
BACKGROUND AND OBJECTIVE: Respiratory gating training is a common technique to increase patient proprioception, with the goal of (e.g.) minimizing the effects of organ motion during radiotherapy. In this work, we devise a system based on autoencoders for classification of regular, apnea and unconstrained breathing patterns (i.e. multiclass). METHODS: Our approach is based on morphological analysis of the respiratory signals, using an autoencoder trained on regular breathing. The correlation between the input and output of the autoencoder is used to train and test several classifiers in order to select the best. Our approach is evaluated in a novel real-world respiratory gating biofeedback training dataset and on the Apnea-ECG reference dataset. RESULTS: Accuracies of 95 ± 3.5% and 87 ± 6.6% were obtained for two different datasets, in the classification of breathing and apnea. These results suggest the viability of a generalised model to characterise the breathing patterns under study. CONCLUSIONS: Using autoencoders to learn respiratory gating training patterns allows a data-driven approach to feature extraction, by focusing only on the signal's morphology. The proposed system is prone to be used in real-time and could potentially be transferred to other domains.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Apnea / Respiración Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Apnea / Respiración Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article