Influence of aerobic fitness on gastrointestinal barrier integrity and microbial translocation following a fixed-intensity military exertional heat stress test.
Eur J Appl Physiol
; 120(10): 2325-2337, 2020 Oct.
Article
en En
| MEDLINE
| ID: mdl-32794058
PURPOSE: Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, whereby subsequent microbial translocation (MT) can result in potentially serious health consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT following exertional-heat stress is poorly characterised. METHOD: Ten untrained (UT; VO2max = 45 ± 3 ml·kg-1·min-1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg-1·min-1) males completed an ecologically valid (military) 80-min fixed-intensity exertional-heat stress test (EHST). Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA. RESULTS: UT experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml-1) versus HT (0.20 ± 0.29 ng·ml-1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/total 16S DNA responses. CONCLUSION: When exercising at the same absolute workload, UT individuals are more susceptible to small intestinal epithelial injury and MT than HT individuals. These responses appear partially attributable to greater thermoregulatory, cardiovascular, and perceptual strain.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Trastornos de Estrés por Calor
/
Microbioma Gastrointestinal
/
Capacidad Cardiovascular
/
Absorción Intestinal
Límite:
Adult
/
Humans
/
Male
Idioma:
En
Revista:
Eur J Appl Physiol
Asunto de la revista:
FISIOLOGIA
Año:
2020
Tipo del documento:
Article