Isolation and Characterization of CD39-like Phosphodiesterase (Cc-PDE) from Cerastes cerastes Venom: Molecular Inhibitory Mechanism of Antiaggregation and Anticoagulation.
Protein Pept Lett
; 28(4): 426-441, 2021.
Article
en En
| MEDLINE
| ID: mdl-32798364
BACKGROUND: Cerastes cerastes venom contains several bioactive proteins with inhibitory potential of platelet aggregation and blood coagulation. OBJECTIVE: The current study deals with purification, characterization and determination of structural properties of Cc-PDE, the first phosphodiesterase from Cerastes cerastes venom. MATERIAL AND METHODS: The purification process consists of three successive chromatographies including G75-Sephadex size exclusion, DEAE exchange chromatography and affinity using Sildenafil as a main PDEs' specific inhibitor. The amino acid sequence of purified Cc-PDE was determined by liquid chromatography coupled off line to MALDI-TOF/TOF. Modeling and structural features were obtained using several bioinformatics tools. In vivo and in vitro antiplatelet aggregation and anticoagulant assays were performed. RESULTS: Cc-PDE (73 506.42 Da) is a 654-residue single polypeptide with 1-22 signal peptide and it is characterized by the presence of predominant basic amino acids suitable to alkaline pI (8.17). Cc-PDE structure is composed of ß-strands (17%) and α-helices (24%) and it shares a high identity with homologous snake venom PDEs. Cc-PDE hydrolyzes both Bis-p-nitrophenyl phosphate (Km = 2.60 ± 0.95 mM, Vmax = 0.017 ± 0.002569 µmol.min-1) and p-nitrophenyl phosphate (Km = 7.13 mM ± 0.04490 mM, Vmax = 0.053 ±0.012 µmol.min-1). Cc-PDE prevents ADP- and ATP-induced platelet aggregation by hydrolyzing ADP and ATP, reducing surface P-selectin expression and attenuating platelet function. In addition, Cc-PDE inhibits coagulation factors involved in the intrinsic pathway demonstrated by a significant prolongation of activated partial thromboplastin time and in vivo long-lasting anticoagulation. CONCLUSION: The obtained results revealed that Cc-PDE may have a therapeutic potential and could be a remedy for thromboembolic diseases as an alternative of anticoagulant and antiplatelet aggregation chemical origins.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Plaquetas
/
Agregación Plaquetaria
/
Viperidae
/
Hidrolasas Diéster Fosfóricas
/
Proteínas de Reptiles
/
Anticoagulantes
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Protein Pept Lett
Asunto de la revista:
BIOQUIMICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Argelia