Your browser doesn't support javascript.
loading
Cell type-specific changes in transcriptomic profiles of endothelial cells, iPSC-derived neurons and astrocytes cultured on microfluidic chips.
Middelkamp, H H T; Verboven, A H A; De Sá Vivas, A G; Schoenmaker, C; Klein Gunnewiek, T M; Passier, R; Albers, C A; 't Hoen, P A C; Nadif Kasri, N; van der Meer, A D.
Afiliación
  • Middelkamp HHT; Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands. h.h.t.middelkamp@utwente.nl.
  • Verboven AHA; BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands. h.h.t.middelkamp@utwente.nl.
  • De Sá Vivas AG; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands. Anouk.Verboven@radboudumc.nl.
  • Schoenmaker C; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. Anouk.Verboven@radboudumc.nl.
  • Klein Gunnewiek TM; Centre for Molecular and Biomolecular Informatics, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands. Anouk.Verboven@radboudumc.nl.
  • Passier R; Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands.
  • Albers CA; BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands.
  • 't Hoen PAC; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
  • Nadif Kasri N; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
  • van der Meer AD; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
Sci Rep ; 11(1): 2281, 2021 01 26.
Article en En | MEDLINE | ID: mdl-33500551
ABSTRACT
In vitro neuronal models are essential for studying neurological physiology, disease mechanisms and potential treatments. Most in vitro models lack controlled vasculature, despite its necessity in brain physiology and disease. Organ-on-chip models offer microfluidic culture systems with dedicated micro-compartments for neurons and vascular cells. Such multi-cell type organs-on-chips can emulate neurovascular unit (NVU) physiology, however there is a lack of systematic data on how individual cell types are affected by culturing on microfluidic systems versus conventional culture plates. This information can provide perspective on initial findings of studies using organs-on-chip models, and further optimizes these models in terms of cellular maturity and neurovascular physiology. Here, we analysed the transcriptomic profiles of co-cultures of human induced pluripotent stem cell (hiPSC)-derived neurons and rat astrocytes, as well as one-day monocultures of human endothelial cells, cultured on microfluidic chips. For each cell type, large gene expression changes were observed when cultured on microfluidic chips compared to conventional culture plates. Endothelial cells showed decreased cell division, neurons and astrocytes exhibited increased cell adhesion, and neurons showed increased maturity when cultured on a microfluidic chip. Our results demonstrate that culturing NVU cell types on microfluidic chips changes their gene expression profiles, presumably due to distinct surface-to-volume ratios and substrate materials. These findings inform further NVU organ-on-chip model optimization and support their future application in disease studies and drug testing.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Astrocitos / Microfluídica / Células Madre Pluripotentes Inducidas / Células Endoteliales de la Vena Umbilical Humana / Transcriptoma / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Astrocitos / Microfluídica / Células Madre Pluripotentes Inducidas / Células Endoteliales de la Vena Umbilical Humana / Transcriptoma / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos