Your browser doesn't support javascript.
loading
Recruitment location influences bias and uncertainty in SARS-CoV-2 seroprevalence estimates.
Brown, Tyler S; de Salazar Munoz, Pablo Martinez; Bhatia, Abhishek; Bunda, Bridget; Williams, Ellen K; Bor, David; Miller, James S; Mohareb, Amir M; Thierauf, Julia; Yang, Wenxin; Villalba, Julian; Naranbai, Vivek; Beltran, Wilfredo Garcia; Miller, Tyler E; Kress, Doug; Stelljes, Kristen; Johnson, Keith; Larremore, Daniel B; Lennerz, Jochen; Iafrate, A John; Balsari, Satchit; Buckee, Caroline O; Grad, Yonatan H.
Afiliación
  • Brown TS; Massachusetts General Hospital, Boston, MA.
  • de Salazar Munoz PM; Harvard T.H. Chan School of Public Health, Boston, MA.
  • Bhatia A; Harvard T.H. Chan School of Public Health, Boston, MA.
  • Bunda B; Harvard T.H. Chan School of Public Health, Boston, MA.
  • Williams EK; Massachusetts General Hospital, Boston, MA.
  • Bor D; Massachusetts General Hospital, Boston, MA.
  • Miller JS; Harvard T.H. Chan School of Public Health, Boston, MA.
  • Mohareb AM; Cambridge Health Alliance, Cambridge, MA.
  • Thierauf J; Board of Health, City of Somerville, Massachusetts.
  • Yang W; SomerStat, City of Somerville, Massachusetts.
  • Villalba J; University of Colorado, Boulder.
  • Naranbai V; Cambridge Health Alliance, Cambridge, MA.
  • Beltran WG; Massachusetts General Hospital, Boston, MA.
  • Miller TE; Massachusetts General Hospital, Boston, MA.
  • Kress D; Massachusetts General Hospital, Boston, MA.
  • Stelljes K; Massachusetts General Hospital, Boston, MA.
  • Johnson K; Massachusetts General Hospital, Boston, MA.
  • Larremore DB; Massachusetts General Hospital, Boston, MA.
  • Lennerz J; Massachusetts General Hospital, Boston, MA.
  • Iafrate AJ; Massachusetts General Hospital, Boston, MA.
  • Balsari S; Board of Health, City of Somerville, Massachusetts.
  • Buckee CO; SomerStat, City of Somerville, Massachusetts.
  • Grad YH; SomerStat, City of Somerville, Massachusetts.
medRxiv ; 2021 Oct 05.
Article en En | MEDLINE | ID: mdl-33564784
The initial phase of the COVID-19 pandemic in the US was marked by limited diagnostic testing, resulting in the need for seroprevalence studies to estimate cumulative incidence and define epidemic dynamics. In lieu of systematic representational surveillance, venue-based sampling was often used to rapidly estimate a community's seroprevalence. However, biases and uncertainty due to site selection and use of convenience samples are poorly understood. Using data from a SARS-CoV-2 serosurveillance study we performed in Somerville, Massachusetts, we found that the uncertainty in seroprevalence estimates depends on how well sampling intensity matches the known or expected geographic distribution of seropositive individuals in the study area. We use GPS-estimated foot traffic to measure and account for these sources of bias. Our results demonstrated that study-site selection informed by mobility patterns can markedly improve seroprevalence estimates. Such data should be used in the design and interpretation of venue-based serosurveillance studies.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: MedRxiv Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: MedRxiv Año: 2021 Tipo del documento: Article