Your browser doesn't support javascript.
loading
Towards robust statistical inference for complex computer models.
Oberpriller, Johannes; Cameron, David R; Dietze, Michael C; Hartig, Florian.
Afiliación
  • Oberpriller J; Theoretical Ecology, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany.
  • Cameron DR; UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH260QB, UK.
  • Dietze MC; Department of Earth & Environment, Boston University, Boston, MA, USA.
  • Hartig F; Theoretical Ecology, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany.
Ecol Lett ; 24(6): 1251-1261, 2021 Jun.
Article en En | MEDLINE | ID: mdl-33783944
Ecologists increasingly rely on complex computer simulations to forecast ecological systems. To make such forecasts precise, uncertainties in model parameters and structure must be reduced and correctly propagated to model outputs. Naively using standard statistical techniques for this task, however, can lead to bias and underestimation of uncertainties in parameters and predictions. Here, we explain why these problems occur and propose a framework for robust inference with complex computer simulations. After having identified that model error is more consequential in complex computer simulations, due to their more pronounced nonlinearity and interconnectedness, we discuss as possible solutions data rebalancing and adding bias corrections on model outputs or processes during or after the calibration procedure. We illustrate the methods in a case study, using a dynamic vegetation model. We conclude that developing better methods for robust inference of complex computer simulations is vital for generating reliable predictions of ecosystem responses.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Modelos Estadísticos / Ecosistema Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Ecol Lett Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Modelos Estadísticos / Ecosistema Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Ecol Lett Año: 2021 Tipo del documento: Article País de afiliación: Alemania