Your browser doesn't support javascript.
loading
Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive hydrogel adhesives.
Xu, Yong; Rothe, Rebecca; Voigt, Dagmar; Hauser, Sandra; Cui, Meiying; Miyagawa, Takuya; Patino Gaillez, Michelle; Kurth, Thomas; Bornhäuser, Martin; Pietzsch, Jens; Zhang, Yixin.
Afiliación
  • Xu Y; Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
  • Rothe R; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany.
  • Voigt D; Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany.
  • Hauser S; Technische Universität Dresden, Institute for Botany, Faculty of Biology, Dresden, Germany.
  • Cui M; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany.
  • Miyagawa T; Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
  • Patino Gaillez M; Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
  • Kurth T; Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
  • Bornhäuser M; Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM Facilty, Dresden, Germany.
  • Pietzsch J; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
  • Zhang Y; University Hospital Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Dresden, Germany.
Nat Commun ; 12(1): 2407, 2021 04 23.
Article en En | MEDLINE | ID: mdl-33893308
ABSTRACT
Many features of extracellular matrices, e.g., self-healing, adhesiveness, viscoelasticity, and conductivity, are associated with the intricate networks composed of many different covalent and non-covalent chemical bonds. Whereas a reductionism approach would have the limitation to fully recapitulate various biological properties with simple chemical structures, mimicking such sophisticated networks by incorporating many different functional groups in a macromolecular system is synthetically challenging. Herein, we propose a strategy of convergent synthesis of complex polymer networks to produce biomimetic electroconductive liquid metal hydrogels. Four precursors could be individually synthesized in one to two reaction steps and characterized, then assembled to form hydrogel adhesives. The convergent synthesis allows us to combine materials of different natures to generate matrices with high adhesive strength, enhanced electroconductivity, good cytocompatibility in vitro and high biocompatibility in vivo. The reversible networks exhibit self-healing and shear-thinning properties, thus allowing for 3D printing and minimally invasive injection for in vivo experiments.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Adhesivos / Hidrogeles / Conductividad Eléctrica / Metales Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Adhesivos / Hidrogeles / Conductividad Eléctrica / Metales Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Alemania