Your browser doesn't support javascript.
loading
Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals.
Vallone, Fabio; Ottaviani, Matteo Maria; Dedola, Francesca; Cutrone, Annarita; Romeni, Simone; Panarese, Adele Macrí; Bernini, Fabio; Cracchiolo, Marina; Strauss, Ivo; Gabisonia, Khatia; Gorgodze, Nikoloz; Mazzoni, Alberto; Recchia, Fabio A; Micera, Silvestro.
Afiliación
  • Vallone F; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Ottaviani MM; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Dedola F; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Cutrone A; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Romeni S; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Panarese AM; Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
  • Bernini F; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Cracchiolo M; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Strauss I; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Gabisonia K; The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Gorgodze N; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Mazzoni A; Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
  • Recchia FA; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
  • Micera S; Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
J Neural Eng ; 18(4)2021 07 07.
Article en En | MEDLINE | ID: mdl-34153949
ABSTRACT
Objective. Bioelectronic medicine is opening new perspectives for the treatment of some major chronic diseases through the physical modulation of autonomic nervous system activity. Being the main peripheral route for electrical signals between central nervous system and visceral organs, the vagus nerve (VN) is one of the most promising targets. Closed-loop VN stimulation (VNS) would be crucial to increase effectiveness of this approach. Therefore, the extrapolation of useful physiological information from VN electrical activity would represent an invaluable source for single-target applications. Here, we present an advanced decoding algorithm novel to VN studies and properly detecting different functional changes from VN signals.Approach. VN signals were recorded using intraneural electrodes in anaesthetized pigs during cardiovascular and respiratory challenges mimicking increases in arterial blood pressure, tidal volume and respiratory rate. We developed a decoding algorithm that combines discrete wavelet transformation, principal component analysis, and ensemble learning made of classification trees.Main results. The new decoding algorithm robustly achieved high accuracy levels in identifying different functional changes and discriminating among them. Interestingly our findings suggest that electrodes positioning plays an important role on decoding performances. We also introduced a new index for the characterization of recording and decoding performance of neural interfaces. Finally, by combining an anatomically validated hybrid neural model and discrimination analysis, we provided new evidence suggesting a functional topographical organization of VN fascicles.Significance. This study represents an important step towards the comprehension of VN signaling, paving the way for the development of effective closed-loop VNS systems.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Estimulación del Nervio Vago / Fenómenos Fisiológicos del Sistema Nervioso Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Estimulación del Nervio Vago / Fenómenos Fisiológicos del Sistema Nervioso Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia