Your browser doesn't support javascript.
loading
High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery.
Shin, Jisun; Jo, Young-Heon; Ryu, Joo-Hyung; Khim, Boo-Keun; Kim, Soo Mee.
Afiliación
  • Shin J; BK21 School of Earth and Environmental Systems, Pusan National University, Busan 46241, Korea.
  • Jo YH; BK21 School of Earth and Environmental Systems, Pusan National University, Busan 46241, Korea.
  • Ryu JH; Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea.
  • Khim BK; BK21 School of Earth and Environmental Systems, Pusan National University, Busan 46241, Korea.
  • Kim SM; Maritime ICT R&D Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article en En | MEDLINE | ID: mdl-34209710
Red tides caused by Margalefidinium polykrikoides occur continuously along the southern coast of Korea, where there are many aquaculture cages, and therefore, prompt monitoring of bloom water is required to prevent considerable damage. Satellite-based ocean-color sensors are widely used for detecting red tide blooms, but their low spatial resolution restricts coastal observations. Contrarily, terrestrial sensors with a high spatial resolution are good candidate sensors, despite the lack of spectral resolution and bands for red tide detection. In this study, we developed a U-Net deep learning model for detecting M. polykrikoides blooms along the southern coast of Korea from PlanetScope imagery with a high spatial resolution of 3 m. The U-Net model was trained with four different datasets that were constructed with randomly or non-randomly chosen patches consisting of different ratios of red tide and non-red tide pixels. The qualitative and quantitative assessments of the conventional red tide index (RTI) and four U-Net models suggest that the U-Net model, which was trained with a dataset of non-randomly chosen patches including non-red tide patches, outperformed RTI in terms of sensitivity, precision, and F-measure level, accounting for an increase of 19.84%, 44.84%, and 28.52%, respectively. The M. polykrikoides map derived from U-Net provides the most reasonable red tide patterns in all water areas. Combining high spatial resolution images and deep learning approaches represents a good solution for the monitoring of red tides over coastal regions.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Dinoflagelados / Floraciones de Algas Nocivas Tipo de estudio: Diagnostic_studies / Qualitative_research País/Región como asunto: Asia Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Dinoflagelados / Floraciones de Algas Nocivas Tipo de estudio: Diagnostic_studies / Qualitative_research País/Región como asunto: Asia Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article