Verification of performance of a direct fluorescent assay for cell-free DNA quantification, stability according to pre-analytical storage conditions, and the effect of freeze-thawing.
Biomed Rep
; 15(2): 68, 2021 Aug.
Article
en En
| MEDLINE
| ID: mdl-34257964
A simple fluorescence-based cell-free DNA (CFD) assay has been previously developed that can directly measure nucleic acids without prior DNA extraction and amplification. However, studies on fluorescence-based CFD are lacking. In particular, there is no known information regarding the stability with regard to pre-analytical storage conditions in relation to time and temperature, or on the influence of freeze-thawing. Plasma was directly assayed to measure CFD using PicoGreen™ reagent. Standard linearity and accuracy were confirmed using salmon sperm DNA. Whole blood was left at room temperature (RT) and at 4ËC, and then plasma was separated. The CFD was also measured using thawed plasma after 1 week of freezing. As a correlation with a sperm DNA concentration, CFD demonstrated linearity over a wide range of concentrations, with a 0.998 correlation coefficient. The CFD level showed a change of up to 2.5 µg/ml according to pre-analytical storage time, and the changes were not consistent over time. The CFD values at RT after 1 h were similar to the baseline values, and the relative standard deviation was lowest under this condition. The CFD values between 4ËC and RT were similar over all time periods assessed. After freeze-thawing, the change in CFD value was reduced compared to that before freezing. The present study showed that CFD measurements using plasma processed within 1 h were optimal. Additionally, the effects of substantial changes according to storage conditions were reduced after freeze-thawing, and thus studies using stored samples is viable and relevant.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Biomed Rep
Año:
2021
Tipo del documento:
Article