Your browser doesn't support javascript.
loading
Microenvironment of mammary fat pads affected the characteristics of the tumors derived from the induced cancer stem cells.
Abu Quora, Hagar A; Zahra, Maram H; El-Ghlban, Samah; Nair, Neha; Afify, Said M; Hassan, Ghmkin; Nawara, Hend M; Sheta, Mona; Monzur, Sadia; Fu, Xiaoying; Osman, Amira; Seno, Akimasa; Seno, Masaharu.
Afiliación
  • Abu Quora HA; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Zahra MH; Cytology, Histology and Histochemistry, Zoology Department, Faculty of Science, Menoufia University Menoufia 32511, Egypt.
  • El-Ghlban S; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Nair N; Division of Biochemistry, Faculty of Science, Menoufia University Menoufia 32511, Egypt.
  • Afify SM; Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University Okayama 700-8530, Japan.
  • Hassan G; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Nawara HM; Division of Biochemistry, Faculty of Science, Menoufia University Menoufia 32511, Egypt.
  • Sheta M; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Monzur S; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Fu X; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Osman A; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Seno A; Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University Okayama 700-8530, Japan.
  • Seno M; Department of Pathology, Tianjin University of Traditional Chinese Medicine Tianjin 300193, China.
Am J Cancer Res ; 11(7): 3475-3495, 2021.
Article en En | MEDLINE | ID: mdl-34354856
Breast cancer is the first common cause of cancer-related death in women worldwide. Since the malignancy and aggressiveness of breast cancer have been correlated with the presence of breast cancer stem cells, the establishment of a disease model with cancer stem cells is required for the development of a novel therapeutic strategy. Here, we aimed to evaluate the availability of cancer stem cell models developed from mouse induced pluripotent stem cells with the conditioned medium of different subtypes of breast cancer cell lines, the hormonal-responsive T47D cell line and the triple-negative breast cancer BT549 cell line, to generate in vivo tumor models. When transplanted into the mammary fat pads of BALB/c nude mice, these two model cells formed malignant tumors exhibiting pronounced histopathological characteristics similar to breast cancers. Serial transplantation of the primary cultured cells into mammary fat pads evoked the same features of breast cancer, while this result was perturbed following subcutaneous transplantation. The tumors formed in the mammary fat pads exhibited immune reactivities to prolactin receptor, progesterone receptor, green florescent protein, Ki67, CD44, estrogen receptor α/ß and cytokeratin 8, while all of the tumors and their derived primary cells exhibited immunoreactivity to estrogen receptor α/ß and cytokeratin 8. Cancer stem cells can be developed from pluripotent stem cells via the secretory factors of cancer-derived cells with the capacity to inherit tissue specificity. However, cancer stem cells should be plastic enough to be affected by the microenvironment of specific tissues. In summary, we successfully established a breast cancer tumor model using mouse induced pluripotent stem cells developed from normal fibroblasts without genetic manipulation.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Am J Cancer Res Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Am J Cancer Res Año: 2021 Tipo del documento: Article País de afiliación: Japón