Your browser doesn't support javascript.
loading
Pupil responses associated with the perception of gravitational vertical under directional optic flows.
Park, Joo Hyun; Cho, Sung Ik; Choi, June; Han, JungHyun; Rah, Yoon Chan.
Afiliación
  • Park JH; Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University College of Medicine, Ilsan Hospital, Goyang, Republic of Korea.
  • Cho SI; Department of Computer Science and Engineering, Korea University College of Informatics, Seoul, Republic of Korea.
  • Choi J; Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
  • Han J; Department of Computer Science and Engineering, Korea University College of Informatics, Seoul, Republic of Korea.
  • Rah YC; Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea. rah_yoonchan@korea.ac.kr.
Sci Rep ; 11(1): 21303, 2021 10 29.
Article en En | MEDLINE | ID: mdl-34716355
ABSTRACT
This study assessed the pupil responses in the sensory integration of various directional optic flows during the perception of gravitational vertical. A total of 30 healthy participants were enrolled with normal responses to conventional subjective visual vertical (SVV) which was determined by measuring the difference (error angles) between the luminous line adjusted by the participants and the true vertical. SVV was performed under various types of rotational (5°/s, 10°/s, and 50°/s) and straight (5°/s and 10°/s) optic flows presented via a head-mounted display. Error angles (°) of the SVV and changes in pupil diameters (mm) were measured to evaluate the changes in the visually assessed subjective verticality and related cognitive demands. Significantly larger error angles were measured under rotational optic flows than under straight flows (p < 0.001). The error angles also significantly increased as the velocity of the rotational optic flow increased. The pupil diameter increased after starting the test, demonstrating the largest diameter during the final fine-tuning around the vertical. Significantly larger pupil changes were identified under rotational flows than in straight flows. Pupil changes were significantly correlated with error angles and the visual analog scale representing subjective difficulties during each test. These results suggest increased pupil changes for integrating more challenging visual sensory inputs in the process of gravity perception.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Percepción Visual / Pupila / Sensación de Gravedad Tipo de estudio: Risk_factors_studies Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Percepción Visual / Pupila / Sensación de Gravedad Tipo de estudio: Risk_factors_studies Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article