Your browser doesn't support javascript.
loading
Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes.
Ali, Md Azahar; Hu, Chunshan; Yuan, Bin; Jahan, Sanjida; Saleh, Mohammad S; Guo, Zhitao; Gellman, Andrew J; Panat, Rahul.
Afiliación
  • Ali MA; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Hu C; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Yuan B; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Jahan S; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Saleh MS; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Guo Z; Department of Chemical Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Gellman AJ; Department of Chemical Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Panat R; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. rpanat@andrew.cmu.edu.
Nat Commun ; 12(1): 7077, 2021 12 06.
Article en En | MEDLINE | ID: mdl-34873183
Sensing of clinically relevant biomolecules such as neurotransmitters at low concentrations can enable an early detection and treatment of a range of diseases. Several nanostructures are being explored by researchers to detect biomolecules at sensitivities beyond the picomolar range. It is recognized, however, that nanostructuring of surfaces alone is not sufficient to enhance sensor sensitivities down to the femtomolar level. In this paper, we break this barrier/limit by introducing a sensing platform that uses a multi-length-scale electrode architecture consisting of 3D printed silver micropillars decorated with graphene nanoflakes and use it to demonstrate the detection of dopamine at a limit-of-detection of 500 attomoles. The graphene provides a high surface area at nanoscale, while micropillar array accelerates the interaction of diffusing analyte molecules with the electrode at low concentrations. The hierarchical electrode architecture introduced in this work opens the possibility of detecting biomolecules at ultralow concentrations.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Electrodos / Técnicas Electroquímicas / Impresión Tridimensional / Grafito Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Electrodos / Técnicas Electroquímicas / Impresión Tridimensional / Grafito Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos