Your browser doesn't support javascript.
loading
Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration.
Uribe-Gomez, Juan; Posada-Murcia, Andrés; Shukla, Amit; Ergin, Mert; Constante, Gissela; Apsite, Indra; Martin, Dulle; Schwarzer, Madeleine; Caspari, Anja; Synytska, Alla; Salehi, Sahar; Ionov, Leonid.
Afiliación
  • Martin D; Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Wilhelm-Johnen-Straße, Jülich 52428, Germany.
  • Schwarzer M; Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany.
  • Caspari A; Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany.
  • Synytska A; Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany.
  • Salehi S; Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics, Dresden University of Technology, Dresden 01062, Germany.
  • Ionov L; Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Strasse 1, 95447 Bayreuth, Germany.
ACS Appl Bio Mater ; 4(2): 1720-1730, 2021 02 15.
Article en En | MEDLINE | ID: mdl-35014518
ABSTRACT
This paper reports an approach for the fabrication of shape-changing bilayered scaffolds, which allow the growth of aligned skeletal muscle cells, using a combination of 3D printing of hyaluronic acid hydrogel, melt electrowriting of thermoplastic polycaprolactone-polyurethane elastomer, and shape transformation. The combination of the selected materials and fabrication methods allows a number of important advantages such as biocompatibility, biodegradability, and suitable mechanical properties (elasticity and softness of the fibers) similar to those of important components of extracellular matrix (ECM), which allow proper cell alignment and shape transformation. Myoblasts demonstrate excellent viability on the surface of the shape-changing bilayer, where they occupy space between fibers and align along them, allowing efficient cell patterning inside folded structures. The bilayer scaffold is able to undergo a controlled shape transformation and form multilayer scroll-like structures with cells encapsulated inside. Overall, the importance of this approach is the fabrication of tubular constructs with a patterned interior that can support the proliferation and alignment of muscle cells for muscle tissue regeneration.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Fibras Musculares Esqueléticas / Hidrogeles / Elastómeros / Ingeniería de Tejidos / Impresión Tridimensional Límite: Animals Idioma: En Revista: ACS Appl Bio Mater Año: 2021 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Fibras Musculares Esqueléticas / Hidrogeles / Elastómeros / Ingeniería de Tejidos / Impresión Tridimensional Límite: Animals Idioma: En Revista: ACS Appl Bio Mater Año: 2021 Tipo del documento: Article