Your browser doesn't support javascript.
loading
Genetic architecture and genomic predictive ability of apple quantitative traits across environments.
Jung, Michaela; Keller, Beat; Roth, Morgane; Aranzana, Maria José; Auwerkerken, Annemarie; Guerra, Walter; Al-Rifaï, Mehdi; Lewandowski, Mariusz; Sanin, Nadia; Rymenants, Marijn; Didelot, Frédérique; Dujak, Christian; Forcada, Carolina Fonti; Knauf, Andrea; Laurens, François; Studer, Bruno; Muranty, Hélène; Patocch, Andrea.
Afiliación
  • Jung M; Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland.
  • Keller B; Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland.
  • Roth M; Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland.
  • Aranzana MJ; Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland.
  • Auwerkerken A; Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland.
  • Guerra W; GAFL, INRAE, 84140 Montfavet, France.
  • Al-Rifaï M; IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain.
  • Lewandowski M; Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
  • Sanin N; Better3fruit N.V., 3202 Rillaar, Belgium.
  • Rymenants M; Research Centre Laimburg, 39040 Auer, Italy.
  • Didelot F; Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France.
  • Dujak C; The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
  • Forcada CF; Research Centre Laimburg, 39040 Auer, Italy.
  • Knauf A; Better3fruit N.V., 3202 Rillaar, Belgium.
  • Laurens F; Laboratory for Plant Genetics and Crop Improvement, KU Leuven, B-3001, Leuven, Belgium.
  • Studer B; Unité expérimentale Horticole, INRAE, F-49000 Angers, France.
  • Muranty H; Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
  • Patocch A; IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain.
Hortic Res ; 2022 Feb 19.
Article en En | MEDLINE | ID: mdl-35184165
ABSTRACT
Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Hortic Res Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Hortic Res Año: 2022 Tipo del documento: Article País de afiliación: Suiza