Your browser doesn't support javascript.
loading
Differential Patterns of Change in Brain Connectivity Resulting from Severe Traumatic Brain Injury.
Nakuci, Johan; McGuire, Matthew; Schweser, Ferdinand; Poulsen, David; Muldoon, Sarah F.
Afiliación
  • Nakuci J; Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA.
  • McGuire M; Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA.
  • Schweser F; Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA.
  • Poulsen D; Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA.
  • Muldoon SF; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, SUNY, Buffalo, New York, USA.
Brain Connect ; 12(9): 799-811, 2022 Nov.
Article en En | MEDLINE | ID: mdl-35302399
ABSTRACT

Background:

Traumatic brain injury (TBI) damages white matter tracts, disrupting brain network structure and communication. There exists a wide heterogeneity in the pattern of structural damage associated with injury, as well as a large heterogeneity in behavioral outcomes. However, little is known about the relationship between changes in network connectivity and clinical outcomes. Materials and

Methods:

We utilize the rat lateral fluid-percussion injury model of severe TBI to study differences in brain connectivity in 8 animals that received the insult and 11 animals that received only a craniectomy. Diffusion tensor imaging is performed 5 weeks after the injury and network theory is used to investigate changes in white matter connectivity.

Results:

We find that (1) global network measures are not able to distinguish between healthy and injured animals; (2) injury induced alterations predominantly exist in a subset of connections (subnetworks) distributed throughout the brain; and (3) injured animals can be divided into subgroups based on changes in network motifs-measures of local structural connectivity. In addition, alterations in predicted functional connectivity indicate that the subgroups have different propensities to synchronize brain activity, which could relate to the heterogeneity of clinical outcomes.

Discussion:

These results suggest that network measures can be used to quantify progressive changes in brain connectivity due to injury and differentiate among subpopulations with similar injuries, but different pathological trajectories.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Sustancia Blanca / Lesiones Traumáticas del Encéfalo Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Brain Connect Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Sustancia Blanca / Lesiones Traumáticas del Encéfalo Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Brain Connect Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos