Your browser doesn't support javascript.
loading
A Chirality-Based Quantum Leap.
Aiello, Clarice D; Abendroth, John M; Abbas, Muneer; Afanasev, Andrei; Agarwal, Shivang; Banerjee, Amartya S; Beratan, David N; Belling, Jason N; Berche, Bertrand; Botana, Antia; Caram, Justin R; Celardo, Giuseppe Luca; Cuniberti, Gianaurelio; Garcia-Etxarri, Aitzol; Dianat, Arezoo; Diez-Perez, Ismael; Guo, Yuqi; Gutierrez, Rafael; Herrmann, Carmen; Hihath, Joshua; Kale, Suneet; Kurian, Philip; Lai, Ying-Cheng; Liu, Tianhan; Lopez, Alexander; Medina, Ernesto; Mujica, Vladimiro; Naaman, Ron; Noormandipour, Mohammadreza; Palma, Julio L; Paltiel, Yossi; Petuskey, William; Ribeiro-Silva, João Carlos; Saenz, Juan José; Santos, Elton J G; Solyanik-Gorgone, Maria; Sorger, Volker J; Stemer, Dominik M; Ugalde, Jesus M; Valdes-Curiel, Ana; Varela, Solmar; Waldeck, David H; Wasielewski, Michael R; Weiss, Paul S; Zacharias, Helmut; Wang, Qing Hua.
Afiliación
  • Aiello CD; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Abendroth JM; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Abbas M; Laboratory for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland.
  • Afanasev A; Department of Microbiology, Howard University, Washington, D.C. 20059, United States.
  • Agarwal S; Department of Physics, George Washington University, Washington, D.C. 20052, United States.
  • Banerjee AS; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Beratan DN; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Belling JN; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Berche B; Departments of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States.
  • Botana A; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Caram JR; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Celardo GL; Laboratoire de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les Nancy, France.
  • Cuniberti G; Department of Physics, Arizona State University, Tempe, Arizona 85287, United States.
  • Garcia-Etxarri A; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Dianat A; Institute of Physics, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, 72570, Mexico.
  • Diez-Perez I; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.
  • Guo Y; Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany.
  • Gutierrez R; Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain.
  • Herrmann C; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.
  • Hihath J; Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany.
  • Kale S; Department of Chemistry, Faculty of Natural and Mathematical Sciences, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom.
  • Kurian P; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.
  • Lai YC; Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany.
  • Liu T; Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany.
  • Lopez A; Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States.
  • Medina E; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Mujica V; Quantum Biology Laboratory, Graduate School, Howard University, Washington, D.C. 20059, United States.
  • Naaman R; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States.
  • Noormandipour M; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Palma JL; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Paltiel Y; Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador.
  • Petuskey W; Departamento de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador.
  • Ribeiro-Silva JC; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Saenz JJ; Kimika Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain.
  • Santos EJG; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
  • Solyanik-Gorgone M; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Sorger VJ; TCM Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
  • Stemer DM; Department of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States.
  • Ugalde JM; Applied Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
  • Valdes-Curiel A; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
  • Varela S; Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São Paulo, Brazil.
  • Waldeck DH; Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain.
  • Wasielewski MR; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.
  • Weiss PS; Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
  • Zacharias H; Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
  • Wang QH; Department of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article en En | MEDLINE | ID: mdl-35318848
ABSTRACT
There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos