Your browser doesn't support javascript.
loading
Controlling Solution-State Aggregation and Solid-State Microstructures of Conjugated Polymers by Tuning Backbone Conformation.
Wu, Hao-Tian; Yao, Ze-Fan; Xu, Zhe; Kong, Hua-Kang; Wang, Xin-Yi; Li, Qi-Yi; Wang, Jie-Yu; Pei, Jian.
Afiliación
  • Wu HT; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Yao ZF; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Xu Z; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Kong HK; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Wang XY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Li QY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Wang JY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
  • Pei J; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Macromol Rapid Commun ; 43(16): e2200069, 2022 Aug.
Article en En | MEDLINE | ID: mdl-35362637
ABSTRACT
Molecular ordering of conjugated polymers both in solution-state aggregates and in solid-state microstructures is a determining factor of the charge transport properties in optoelectronic devices. However, the effect of backbone conformation in conjugated polymers on assembly structures is still unclear. Herein, to understand such backbone conformation effect, three novel chlorinated benzodifurandionge-based oligo(p-phenylene vinylene) (BDOPV) polymers are systematically developed. These BDOPV-based polymers exhibit significantly twisted backbone conformation (near 90° interunit torsion angle) between conjugated units, which can prevent polymer chains from forming ordered assembly structures by increasing conformational energy penalty in closely packed chains. A higher rotational barrier of the torsion angle would further prevent polymer chains from assembling, finally resulting in nonaggregated chains in solution and highly disordered solid-state packing structures. This work will deepen the understanding of the relationship between polymer backbone conformation and assembly structures, contributing to the exploration of the structure-property relationship of polymers.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Polímeros Idioma: En Revista: Macromol Rapid Commun Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Polímeros Idioma: En Revista: Macromol Rapid Commun Año: 2022 Tipo del documento: Article País de afiliación: China