Your browser doesn't support javascript.
loading
Synergistic effect of chitosan-based sludge aggregates CS@NGS inoculum accelerated the start-up of biofilm reactor treating aquaculture effluent: Insights into performance, microbial characteristics, and functional genes.
Shitu, Abubakar; Zhang, Yadong; Danhassan, Umar Abdulbaki; Li, Haijun; Tadda, Musa Abubakar; Ye, Zhangying; Zhu, Songming.
Afiliación
  • Shitu A; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of
  • Zhang Y; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
  • Danhassan UA; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
  • Li H; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
  • Tadda MA; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of
  • Ye Z; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
  • Zhu S; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, and Rural Affairs, Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. Electronic add
Chemosphere ; 303(Pt 3): 135097, 2022 Sep.
Article en En | MEDLINE | ID: mdl-35636603
ABSTRACT
The moving bed bioreactor (MBBR) process has drawn more attention as a promising biological wastewater treatment process. Nevertheless, achieving quick start-up and microbial biofilm formation remains a significant challenge. Consequently, the present study investigated a novel chitosan-based natural sludge (CS@NGS) seeding strategy for the accelerated start-up of MBBR. Three identical bioreactors were employed; the first bioreactor was without sludge seed as the control (BR1), the second was inoculated only with sludge (BR2), and the third was inoculated with CS@NGS according to the proposed seeding method (BR3). All bioreactors were utilised to treat simulated recirculating aquaculture systems (RAS) effluent. Resultantly, the CS@NGS shortened the start-up period from over twenty to seven days due to the enhanced initial microbial adhesion and biofilm formation. Under optimal conditions, the ammonium removal in BR3 approached 100%, which was relatively higher than BR2 (96.35 ± 1.12%) and BR1 (92.56 ± 2.17%). Moreover, a low nitrite accumulation was exhibited in the effluents, approximately ≤0.03 mg L-1. The process performance correlated positively with core bacteria from the genera Nakamurella, Hyphomicrobium, Nitrospira, Paenarthrobacter, Rhodococcus, and Stenotrophobacter. The quantitative polymerase chain reaction (qPCR) results demonstrated that the CS@NGS enhanced the expressions of amoA, nxrB, nirK, nirS, narG, and napA nitrogen metabolism-related functional genes to varying degrees. The present study findings can assist the rapid start-up of aquaculture biofilters utilised to solve high nitrite and ammonia accumulation in recirculated water from industrial RAS.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aguas del Alcantarillado / Quitosano Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aguas del Alcantarillado / Quitosano Idioma: En Revista: Chemosphere Año: 2022 Tipo del documento: Article