Your browser doesn't support javascript.
loading
Characterizing arrhythmia using machine learning analysis of Ca2+ cycling in human cardiomyocytes.
Pang, Jeremy K S; Chia, Sabrina; Zhang, Jinqiu; Szyniarowski, Piotr; Stewart, Colin; Yang, Henry; Chan, Woon-Khiong; Ng, Shi Yan; Soh, Boon-Seng.
Afiliación
  • Pang JKS; Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
  • Chia S; Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
  • Zhang J; A(∗)STAR Skin Research Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Szyniarowski P; A(∗)STAR Skin Research Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Stewart C; A(∗)STAR Skin Research Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.
  • Yang H; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
  • Chan WK; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
  • Ng SY; Neurotherapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, Sin
  • Soh BS; Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore. Electronic address: bssoh@imcb.a-star.edu.sg
Stem Cell Reports ; 17(8): 1810-1823, 2022 08 09.
Article en En | MEDLINE | ID: mdl-35839773
ABSTRACT
Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties. By training machine learning classifiers on a generated dataset containing a total of 3,003 healthy derived cardiomyocytes and their various arrhythmic states, the multi-class models achieved >90% accuracy in predicting arrhythmia presence and type. We also demonstrate that a binary classifier trained to distinguish cardiotoxic arrhythmia from healthy electrophysiology could determine the key biological changes associated with that specific arrhythmia. Therefore, machine learning algorithms can be used to characterize underlying arrhythmic patterns in samples to improve in vitro preclinical models and complement current in vivo systems.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Miocitos Cardíacos / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Stem Cell Reports Año: 2022 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Miocitos Cardíacos / Células Madre Pluripotentes Inducidas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Stem Cell Reports Año: 2022 Tipo del documento: Article País de afiliación: Singapur