Your browser doesn't support javascript.
loading
A GPU-accelerated compute framework for pathogen genomic variant identification to aid genomic epidemiology of infectious disease: a malaria case study.
Carpi, Giovanna; Gorenstein, Lev; Harkins, Timothy T; Samadi, Mehrzad; Vats, Pankaj.
Afiliación
  • Carpi G; Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
  • Gorenstein L; Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN, USA.
  • Harkins TT; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
  • Samadi M; Rosen Center for Advanced Computing, Purdue University, West Lafayette IN, USA.
  • Vats P; NVIDIA, 2788 San Tomas, Santa Clara, CA, USA.
Brief Bioinform ; 23(5)2022 09 20.
Article en En | MEDLINE | ID: mdl-35945154
As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedades Transmisibles / COVID-19 / Malaria Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedades Transmisibles / COVID-19 / Malaria Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos