Your browser doesn't support javascript.
loading
Satelight: self-attention-based model for epileptic spike detection from multi-electrode EEG.
Fukumori, Kosuke; Yoshida, Noboru; Sugano, Hidenori; Nakajima, Madoka; Tanaka, Toshihisa.
Afiliación
  • Fukumori K; Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan.
  • Yoshida N; Juntendo University Nerima Hospital, Nerima-ku, Tokyo, Japan.
  • Sugano H; Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
  • Nakajima M; Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
  • Tanaka T; Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan.
J Neural Eng ; 19(5)2022 09 23.
Article en En | MEDLINE | ID: mdl-36073896
Objective.Because of the lack of highly skilled experts, automated technologies that support electroencephalogram (EEG)-based in epilepsy diagnosis are advancing. Deep convolutional neural network-based models have been used successfully for detecting epileptic spikes, one of the biomarkers, from EEG. However, a sizeable number of supervised EEG records are required for training.Approach.This study introduces the Satelight model, which uses the self-attention (SA) mechanism. The model was trained using a clinical EEG dataset labeled by five specialists, including 16 008 epileptic spikes and 15 478 artifacts from 50 children. The SA mechanism is expected to reduce the number of parameters and efficiently extract features from a small amount of EEG data. To validate the effectiveness, we compared various spike detection approaches with the clinical EEG data.Main results.The experimental results showed that the proposed method detected epileptic spikes more effectively than other models (accuracy = 0.876 and false positive rate = 0.133).Significance.The proposed model had only one-tenth the number of parameters as the other effective model, despite having such a high detection performance. Further exploration of the hidden parameters revealed that the model automatically attended to the EEG's characteristic waveform locations of interest.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Epilepsia Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Child / Humans Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Epilepsia Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Child / Humans Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Japón