Your browser doesn't support javascript.
loading
Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer.
Raczkowska, Alicja; Pasnik, Iwona; Kukielka, Michal; Nicos, Marcin; Budzinska, Magdalena A; Kucharczyk, Tomasz; Szumilo, Justyna; Krawczyk, Pawel; Crosetto, Nicola; Szczurek, Ewa.
Afiliación
  • Raczkowska A; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland.
  • Pasnik I; Department of Clinical Pathomorphology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
  • Kukielka M; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland.
  • Nicos M; Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
  • Budzinska MA; Ardigen, Podole 76, 30-394, Cracow, Poland.
  • Kucharczyk T; Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
  • Szumilo J; Department of Clinical Pathomorphology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
  • Krawczyk P; Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
  • Crosetto N; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 23a, 17165, Solna, Sweden.
  • Szczurek E; Science for Life Laboratory, Tomtebodavägen 23a, 17165, Solna, Sweden.
BMC Cancer ; 22(1): 1001, 2022 Sep 21.
Article en En | MEDLINE | ID: mdl-36131239
BACKGROUND: Despite the fact that tumor microenvironment (TME) and gene mutations are the main determinants of progression of the deadliest cancer in the world - lung cancer, their interrelations are not well understood. Digital pathology data provides a unique insight into the spatial composition of the TME. Various spatial metrics and machine learning approaches were proposed for prediction of either patient survival or gene mutations from this data. Still, these approaches are limited in the scope of analyzed features and in their explainability, and as such fail to transfer to clinical practice. METHODS: Here, we generated 23,199 image patches from 26 hematoxylin-and-eosin (H&E)-stained lung cancer tissue sections and annotated them into 9 different tissue classes. Using this dataset, we trained a deep neural network ARA-CNN. Next, we applied the trained network to segment 467 lung cancer H&E images from The Cancer Genome Atlas (TCGA) database. We used the segmented images to compute human-interpretable features reflecting the heterogeneous composition of the TME, and successfully utilized them to predict patient survival and cancer gene mutations. RESULTS: We achieved per-class AUC ranging from 0.72 to 0.99 for classifying tissue types in lung cancer with ARA-CNN. Machine learning models trained on the proposed human-interpretable features achieved a c-index of 0.723 in the task of survival prediction and AUC up to 73.5% for PDGFRB in the task of mutation classification. CONCLUSIONS: We presented a framework that accurately predicted survival and gene mutations in lung adenocarcinoma patients based on human-interpretable features extracted from H&E slides. Our approach can provide important insights for designing novel cancer treatments, by linking the spatial structure of the TME in lung adenocarcinoma to gene mutations and patient survival. It can also expand our understanding of the effects that the TME has on tumor evolutionary processes. Our approach can be generalized to different cancer types to inform precision medicine strategies.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Adenocarcinoma del Pulmón / Aprendizaje Profundo / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Cancer Asunto de la revista: NEOPLASIAS Año: 2022 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Adenocarcinoma del Pulmón / Aprendizaje Profundo / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Cancer Asunto de la revista: NEOPLASIAS Año: 2022 Tipo del documento: Article País de afiliación: Polonia