Your browser doesn't support javascript.
loading
Direct observation of narrow electronic energy band formation in 2D molecular self-assembly.
Hellerstedt, Jack; Castelli, Marina; Tadich, Anton; Grubisic-Cabo, Antonija; Kumar, Dhaneesh; Lowe, Benjamin; Gicev, Spiro; Potamianos, Dionysios; Schnitzenbaumer, Maximilian; Scigalla, Pascal; Ghan, Simiam; Kienberger, Reinhard; Usman, Muhammad; Schiffrin, Agustin.
Afiliación
  • Hellerstedt J; School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia agustin.schiffrin@monash.edu.
  • Castelli M; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia.
  • Tadich A; School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia agustin.schiffrin@monash.edu.
  • Grubisic-Cabo A; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia.
  • Kumar D; Australian Synchrotron 800 Blackburn Road Clayton Victoria 3168 Australia.
  • Lowe B; School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia agustin.schiffrin@monash.edu.
  • Gicev S; School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia agustin.schiffrin@monash.edu.
  • Potamianos D; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia.
  • Schnitzenbaumer M; School of Physics and Astronomy, Monash University Clayton Victoria 3800 Australia agustin.schiffrin@monash.edu.
  • Scigalla P; ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University Clayton Victoria 3800 Australia.
  • Ghan S; Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne Parkville Victoria 3010 Australia.
  • Kienberger R; Physik-Department, Technische Universität München 85748 Garching Germany.
  • Usman M; Physik-Department, Technische Universität München 85748 Garching Germany.
  • Schiffrin A; Physik-Department, Technische Universität München 85748 Garching Germany.
Nanoscale Adv ; 4(18): 3845-3854, 2022 Sep 13.
Article en En | MEDLINE | ID: mdl-36133344
ABSTRACT
Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation - as well as control and harnessing - of subtle electronic interactions between molecules in functional organic nanofilms.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Adv Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Adv Año: 2022 Tipo del documento: Article