Your browser doesn't support javascript.
loading
A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans.
Jaroentomeechai, Thapakorn; Kwon, Yong Hyun; Liu, Yiwen; Young, Olivia; Bhawal, Ruchika; Wilson, Joshua D; Li, Mingji; Chapla, Digantkumar G; Moremen, Kelley W; Jewett, Michael C; Mizrachi, Dario; DeLisa, Matthew P.
Afiliación
  • Jaroentomeechai T; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
  • Kwon YH; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
  • Liu Y; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
  • Young O; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
  • Bhawal R; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.
  • Wilson JD; Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, NY, 14850, USA.
  • Li M; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
  • Chapla DG; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
  • Moremen KW; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
  • Jewett MC; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL, 60208-3120, USA.
  • Mizrachi D; Department of Physiology & Developmental Biology, Brigham Young University, Provo, UT, 84602, USA.
  • DeLisa MP; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA. md255@cornell.edu.
Nat Commun ; 13(1): 6325, 2022 10 24.
Article en En | MEDLINE | ID: mdl-36280670
The ability to reconstitute natural glycosylation pathways or prototype entirely new ones from scratch is hampered by the limited availability of functional glycoenzymes, many of which are membrane proteins that fail to express in heterologous hosts. Here, we describe a strategy for topologically converting membrane-bound glycosyltransferases (GTs) into water soluble biocatalysts, which are expressed at high levels in the cytoplasm of living cells with retention of biological activity. We demonstrate the universality of the approach through facile production of 98 difficult-to-express GTs, predominantly of human origin, across several commonly used expression platforms. Using a subset of these water-soluble enzymes, we perform structural remodeling of both free and protein-linked glycans including those found on the monoclonal antibody therapeutic trastuzumab. Overall, our strategy for rationally redesigning GTs provides an effective and versatile biosynthetic route to large quantities of diverse, enzymatically active GTs, which should find use in structure-function studies as well as in biochemical and biomedical applications involving complex glycomolecules.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Polisacáridos / Glicosiltransferasas Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Polisacáridos / Glicosiltransferasas Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos