Your browser doesn't support javascript.
loading
Toward Prediction of Financial Crashes with a D-Wave Quantum Annealer.
Ding, Yongcheng; Gonzalez-Conde, Javier; Lamata, Lucas; Martín-Guerrero, José D; Lizaso, Enrique; Mugel, Samuel; Chen, Xi; Orús, Román; Solano, Enrique; Sanz, Mikel.
Afiliación
  • Ding Y; International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, Shanghai 200444, China.
  • Gonzalez-Conde J; Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.
  • Lamata L; ProQuam Co., Ltd., Shanghai 200444, China.
  • Martín-Guerrero JD; Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.
  • Lizaso E; Quantum Mads, Uribitarte Kalea 6, 48001 Bilbao, Spain.
  • Mugel S; EHU Quantum Center, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain.
  • Chen X; Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain.
  • Orús R; Instituto Carlos I de Física Teórica y Computacional, 18071 Granada, Spain.
  • Solano E; IDAL, Electronic Engineering Department, University of Valencia, Avgda. Universitat s/n, 46100 Burjassot, Spain.
  • Sanz M; ValgrAI: Valencian Graduated School and Research Network of Artificial Intelligence, Camí de Vera, s/n, Edificio 3Q, 46022 Valencia, Spain.
Entropy (Basel) ; 25(2)2023 Feb 10.
Article en En | MEDLINE | ID: mdl-36832689
ABSTRACT
The prediction of financial crashes in a complex financial network is known to be an NP-hard problem, which means that no known algorithm can efficiently find optimal solutions. We experimentally explore a novel approach to this problem by using a D-Wave quantum annealer, benchmarking its performance for attaining a financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then transformed into a spin-1/2 Hamiltonian with at most, two-qubit interactions. The problem is thus equivalent to finding the ground state of an interacting spin Hamiltonian, which can be approximated with a quantum annealer. The size of the simulation is mainly constrained by the necessity of a large number of physical qubits representing a logical qubit with the correct connectivity. Our experiment paves the way for the codification of this quantitative macroeconomics problem in quantum annealers.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China