Your browser doesn't support javascript.
loading
Influence of Nd Substitution on the Phase Constitution in (Zr,Ce)Fe10Si2 Alloys with the ThMn12 Structure.
Kolodziej, Mieszko; Grenèche, Jean-Marc; Auguste, Sandy; Idzikowski, Bogdan; Zubko, Maciej; Bessais, Lotfi; Sniadecki, Zbigniew.
Afiliación
  • Kolodziej M; Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznan, Poland.
  • Grenèche JM; NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
  • Auguste S; Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Le Mans University, Avenue Olivier Messiaen, CEDEX 09, 72085 Le Mans, France.
  • Idzikowski B; Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Le Mans University, Avenue Olivier Messiaen, CEDEX 09, 72085 Le Mans, France.
  • Zubko M; Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznan, Poland.
  • Bessais L; Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland.
  • Sniadecki Z; Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
Materials (Basel) ; 16(4)2023 Feb 11.
Article en En | MEDLINE | ID: mdl-36837150
ABSTRACT
Iron-based compounds with a ThMn12-type structure have the potential to bridge the gap between ferrites and high performance Nd2Fe14B magnets. From the point of view of possible applications, the main advantage is their composition, with about 10 wt.% less rare earth elements in comparison with the 2141 phase. On the other hand, the main issue delaying the development of Fe-rich alloys with a ThMn12-type structure is their structural stability. Therefore, various synthesis methods and stabilizing elements have been proposed to stabilize the structure. In this work, the influence of increasing Nd substitution on the phase constitution of Zr0.4-xNdxCe0.6Fe10Si2 (0 ≤ x ≤ 0.3) alloys was analyzed. X-ray diffraction and 57Fe Mössbauer spectrometry were used as the main methods to derive the stability range and destabilization routes of the 112 structure. For the arc-melted samples, an increase in the lattice parameters of the ThMn12-type structure was observed with the simultaneous growth of bcc-(Fe,Si) content with increasing Nd substitution. After isothermal annealing, the ThMn12-type structure (and the coexisting bcc-(Fe,Si)) were stable over the whole composition range. While the formation of a 112 phase was totally suppressed in the as-cast state for x = 0.3, further heat treatment resulted in the growth of about 45% of the ThMn12-type phase. The results confirmed that the stability range of ThMn12-type structure in the Nd-containing alloys was well improved by other substitutions and the heat treatment, which in turn, is also needed to homogenize the ThMn12-type phase. After further characterization of the magnetic properties and optimization of microstructure, such hard/soft magnetic composites can show their potential by exploiting the exchange spring mechanism.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Polonia