Your browser doesn't support javascript.
loading
Cellular, histological, and behavioral pathological alterations associated with the mouse model of photothrombotic ischemic stroke.
Shabani, Zahra; Farhoudi, Mehdi; Rahbarghazi, Reza; Karimipour, Mohammad; Mehrad, Hossein.
Afiliación
  • Shabani Z; Center for Cerebrovascular Research, University of California, San Francisco, California, USA; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
  • Farhoudi M; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
  • Rahbarghazi R; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
  • Karimipour M; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medi
  • Mehrad H; Islamic Azad University, Tabriz Branch, Basic Sciences Faculty, Department of Physics, Iran. Electronic address: hmehrad@iaut.ac.ir.
J Chem Neuroanat ; 130: 102261, 2023 07.
Article en En | MEDLINE | ID: mdl-36967096
BACKGROUND: Photothrombotic (PT) stroke model is a reliable method to induce ischemic stroke in the target site using the excitation of photosensitive agents such as Rose Bengal (RB) dye after light illumination. Here, we performed a PT-induced brain ischemic model using a green laser and photosensitive agent RB and confirmed its efficiency through cellular, histological, and neurobehavioral approaches. METHODS: Mice were randomly allocated into RB; Laser irradiation; and RB + Laser irradiation groups. Mice were exposed to a green laser at a wavelength of 532 nm and intensity of 150 mW in a mouse model after injection of RB under stereotactic surgery. The pattern of Hemorrhagic and ischemic changes were evaluated throughout the study. The volume of the lesion site was calculated using unbiased stereological methods. For investigation of neurogenesis, we performed double - (BrdU/NeuN) immunofluorescence (IF) staining on day 28 following the last- BrdU injection. To assess the effect and quality of ischemic stroke on neurological behavior, the Modified neurological severity score (mNSS) test was done on days 1, 7, 14, and 28 days after stroke induction. RESULTS: Laser irradiation plus RB induced hemorrhagic tissue and pale ischemic changes over the 5 days. In the next few days, microscopic staining revealed neural tissue degeneration, demarcated necrotic site, and neuronal injury. BrdU staining showed a significant number of proliferating cells in the periphery of the lesion site in the Laser irradiation plus RB group compared to the group (p < 0.05) while the percent of NeuN+ cells per BrdU- positive cells was reduced. Also, prominent astrogliosis was observed in the periphery of irradiated sites on day 28. Neurological deficits were detected in mice from Laser irradiation plus the RB group. No histological or functional deficits were detected in RB and Laser irradiation groups. CONCLUSIONS: Taken together, our study showed cellular and histologic pathological changes which are associated with the PT induction model. Our findings indicated that the undesirable microenvironment and inflammatory conditions could affect neurogenesis concomitantly with functional deficits. Moreover, this research showed that this model is a focal, reproducible, noninvasive and accessible stroke model with a distinctive demarcation similar to human stroke conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Isquemia Encefálica / Accidente Cerebrovascular / Accidente Cerebrovascular Isquémico Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: J Chem Neuroanat Asunto de la revista: ANATOMIA / NEUROLOGIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Isquemia Encefálica / Accidente Cerebrovascular / Accidente Cerebrovascular Isquémico Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: J Chem Neuroanat Asunto de la revista: ANATOMIA / NEUROLOGIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Irán