Your browser doesn't support javascript.
loading
A relay velocity model infers cell-dependent RNA velocity.
Li, Shengyu; Zhang, Pengzhi; Chen, Weiqing; Ye, Lingqun; Brannan, Kristopher W; Le, Nhat-Tu; Abe, Jun-Ichi; Cooke, John P; Wang, Guangyu.
Afiliación
  • Li S; Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA.
  • Zhang P; Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA.
  • Chen W; Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA.
  • Ye L; Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
  • Brannan KW; Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA.
  • Le NT; Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA.
  • Abe JI; Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA.
  • Cooke JP; Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
  • Wang G; Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA.
Nat Biotechnol ; 42(1): 99-108, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37012448
RNA velocity provides an approach for inferring cellular state transitions from single-cell RNA sequencing (scRNA-seq) data. Conventional RNA velocity models infer universal kinetics from all cells in an scRNA-seq experiment, resulting in unpredictable performance in experiments with multi-stage and/or multi-lineage transition of cell states where the assumption of the same kinetic rates for all cells no longer holds. Here we present cellDancer, a scalable deep neural network that locally infers velocity for each cell from its neighbors and then relays a series of local velocities to provide single-cell resolution inference of velocity kinetics. In the simulation benchmark, cellDancer shows robust performance in multiple kinetic regimes, high dropout ratio datasets and sparse datasets. We show that cellDancer overcomes the limitations of existing RNA velocity models in modeling erythroid maturation and hippocampus development. Moreover, cellDancer provides cell-specific predictions of transcription, splicing and degradation rates, which we identify as potential indicators of cell fate in the mouse pancreas.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: ARN / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: ARN / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos