Your browser doesn't support javascript.
loading
Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development.
Xie, Stanley C; Griffin, Michael D W; Winzeler, Elizabeth A; Ribas de Pouplana, Lluis; Tilley, Leann.
Afiliación
  • Xie SC; Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; email: sc.xie@unimelb.edu.au, mgriffin@unimelb.edu.au, ltilley@unimelb.edu.au.
  • Griffin MDW; Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; email: sc.xie@unimelb.edu.au, mgriffin@unimelb.edu.au, ltilley@unimelb.edu.au.
  • Winzeler EA; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; email: ewinzeler@ucsd.edu.
  • Ribas de Pouplana L; Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; email: lluis.ribas@irbbarcelona.org.
  • Tilley L; Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain.
Annu Rev Microbiol ; 77: 111-129, 2023 09 15.
Article en En | MEDLINE | ID: mdl-37018842
ABSTRACT
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aminoacil-ARNt Sintetasas / Malaria / Antimaláricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Annu Rev Microbiol Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aminoacil-ARNt Sintetasas / Malaria / Antimaláricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Annu Rev Microbiol Año: 2023 Tipo del documento: Article