Your browser doesn't support javascript.
loading
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology.
van der Kamp, Ananda; de Bel, Thomas; van Alst, Ludo; Rutgers, Jikke; van den Heuvel-Eibrink, Marry M; Mavinkurve-Groothuis, Annelies M C; van der Laak, Jeroen; de Krijger, Ronald R.
Afiliación
  • van der Kamp A; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 24, 3584 CS Utrecht, The Netherlands.
  • de Bel T; Department of Pathology, Radboud University Medical Center, Geert Grooteplein 1, 6500 HB Nijmegen, The Netherlands.
  • van Alst L; Department of Pathology, Radboud University Medical Center, Geert Grooteplein 1, 6500 HB Nijmegen, The Netherlands.
  • Rutgers J; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 24, 3584 CS Utrecht, The Netherlands.
  • van den Heuvel-Eibrink MM; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 24, 3584 CS Utrecht, The Netherlands.
  • Mavinkurve-Groothuis AMC; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 24, 3584 CS Utrecht, The Netherlands.
  • van der Laak J; Department of Pathology, Radboud University Medical Center, Geert Grooteplein 1, 6500 HB Nijmegen, The Netherlands.
  • de Krijger RR; Center for Medical Image Science and Visualization, Linköping University, 581 83 Linköping, Sweden.
Cancers (Basel) ; 15(9)2023 May 08.
Article en En | MEDLINE | ID: mdl-37174121
(1) Background: Histopathological assessment of Wilms tumors (WT) is crucial for risk group classification to guide postoperative stratification in chemotherapy pre-treated WT cases. However, due to the heterogeneous nature of the tumor, significant interobserver variation between pathologists in WT diagnosis has been observed, potentially leading to misclassification and suboptimal treatment. We investigated whether artificial intelligence (AI) can contribute to accurate and reproducible histopathological assessment of WT through recognition of individual histopathological tumor components. (2) Methods: We assessed the performance of a deep learning-based AI system in quantifying WT components in hematoxylin and eosin-stained slides by calculating the Sørensen-Dice coefficient for fifteen predefined renal tissue components, including six tumor-related components. We trained the AI system using multiclass annotations from 72 whole-slide images of patients diagnosed with WT. (3) Results: The overall Dice coefficient for all fifteen tissue components was 0.85 and for the six tumor-related components was 0.79. Tumor segmentation worked best to reliably identify necrosis (Dice coefficient 0.98) and blastema (Dice coefficient 0.82). (4) Conclusions: Accurate histopathological classification of WT may be feasible using a digital pathology-based AI system in a national cohort of WT patients.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Cancers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Cancers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos