Defect-Mediated Growth of Crystallographic Shear Plane.
Small
; 19(44): e2302365, 2023 Nov.
Article
en En
| MEDLINE
| ID: mdl-37420328
As representative extended planar defects, crystallographic shear (CS) planes, namely Wadsley defects, play an important role in modifying the physical and chemical properties of metal oxides. Although these special structures have been intensively investigated for high-rate anode materials and catalysts, it is still experimentally unclear how the CS planes form and propagate at the atomic scale. Here, the CS plane evolution in monoclinic WO3 is directly imaged via in situ scanning transmission electron microscope. It is found that the CS planes nucleate preferentially at the edge step defects and proceed by the cooperative migration of WO6 octahedrons along particular crystallographic orientations, passing through a series of intermediate states. The local reconstruction of atomic columns tends to form (102) CS planes featured with four edge-sharing octahedrons in preference to the (103) planes, which matches well with the theoretical calculations. Associated with the structure evolution, the sample undergoes a semiconductor-to-metal transition. In addition, the controlled growth of CS planes and V-shaped CS structures can be achieved by artificial defects for the first time. These findings enable an atomic-scale understanding of CS structure evolution dynamics.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China